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 Objectives
– Develop high-fidelity neutronics solvers for the reactor IPSC code SHARP

 Main Accomplishments in FY2010
– Multigroup Cross Section Generation Code MC2-3

• Integrated unit cell calculation capabilities of the legacy code SDX into MC2-3
• Extended fine group (230 groups) transport calculation of SDX to ultrafine 

(~2000) and hyperfine (~300,000) group levels
• Developed a practical hyperfine group calculation scheme based on the 

iteration between ultrafine group eigenvalue calculations and hyperfine 
group fixed source calculations 

– Even-Parity Discrete Ordinate Solver SN2ND
• Has been demonstrated to scale well up to 294,912 (April 2010)

– Good performance on BlueGene/P (ANL & JSC) and XT5 (ORNL)
• Replaced PN scattering source operations with SN algorithm 

– Required to maintain >75% strong scaling in angle with anisotropic 
scattering

– Required to create a time dependent version of the algorithm

Neutronics Modeling - Summary
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 Main Accomplishments in FY2010 (cont’d)
– First Order MOC Solver MOCFE

• Identified and resolved numerous parallel ray tracing issues
– Developed a scalable back projection algorithm for 3-D

• Formalized the algorithmic basis of the dynamic error controller
• Large scale parallel testing is in progress

– 83% spatial strong scaling from 64 to 1024 cores of BG/P (SN2ND is 95%)
– First Order MOC Solver DeCART for Thermal Reactor Analyses (VHTR M&S)

• Implemented angular domain decomposition scheme to enhance parallel 
computation capability   

• Implemented a coupled neutron and gamma heating calculation capability
– Verification and Validation Tests

• Extensive verification and validation tests of MC2-3 against over 30 
benchmark problems in the ICSBEP and IRPhEP handbooks

• Combined validation tests of MC2-3 and UNIC against ZPR-6/7 experiments
– Criticality and foil activation measurements for four core loadings

• Verifications tests of DeCART against HTTR and VHTRC benchmark problems

Neutronics Modeling – Summary (cont’d)
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 Main Accomplishments in FY2010 (cont’d)
– Coupled Neutronics and Thermo-fluids Analysis of VHTR 

• Improved the DeCART/STAR-CD coupling scheme for consistently coupled 
neutronics and thermo-fluids analysis of prismatic VHTR cores

 Milestones/Deliverables
– 09/15, Report on UNIC Code Development and Associated Verification and 

Validation Tests (M3)

– 09/30, Report on Multigroup Cross Section Generation for UNIC and Associated 
Verification (M2)

– 03/31, Enhanced Iteration and Parallel Solution Methodologies for VHTR 
Simulation (M3, VHTR M&S)

– 06/30, Verification and Validation Studies of Advanced VHTR Modeling and 
Simulation Code (M2, VHTR M&S)

– 09/30, Status Report on High-Fidelity VHTR Modeling and Simulation (M2, VHTR 
M&S) 

Neutronics Modeling – Summary (cont’d)
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 One-dimensional HFG unit cell 
calculation capabilities 

– Intermediate group unit cell 
calculation capability was 
extended to ultrafine group

– Further extended to hyperfine 
group calculations with 
anisotropic scattering sources

• Eliminate the equivalence 
theory approximation used 
to prepare self-shielded 
ultrafine group cross 
sections 

Multi-group Cross Section Generation Code MC2-3

Self-shielding Resonances 
Using HFG Fluxes

1D UFG Transport Calculation
with Fission Source Iteration 

Collapse to Broad-group 
Cross Sections

UFG Calculation

1D Slowing-down Calculation 
with Anisotropic Elastic 

Scattering and Fixed Sources

Interpolation of Fission, 
Inelastic, (n,2n) Sources to 

Hyperfine Groups

HFG Calculation

Hyperfine Group Calc. 
Required ?

Effective Background Cross 
Sections Using Equivalence 

Theory

Library & Data

Self-shielding Resonances
Using NR approximation

– However, one-dimensional hyperfine group eigenvalue calculation with 
anisotropic scattering sources requires a prohibitive computational time

– A practical hyperfine group calculation scheme was developed based on the 
iteration between ultrafine group eigenvalue calculations and hyperfine group 
fixed source calculations
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Improved Self-Shielding of Unresolved Resonances

 The number of energy grid points 
for evaluating self-shielded cross 
sections in the unresolved energy 
range was increased from those 
given in ENDF/B data to the UFG 
energy grid 

– E.g., 18 to 241 points for U-238 

* * *( ) ( ) /( )
k k

i i
x x b x k k

k i k i
E E J D fσ σ σ

∈ ∈

= = < Γ > < >∑ ∑

1.E-03

1.E-01

1.E+01

1.E+03

2.E+04 4.E+04 6.E+04 8.E+04 1.E+05 1.E+05

Energy (eV)

C
ap

tu
re

 X
S

 (b
ar

n)

-10

-5

0

5

10

%
 d

iff

Capture XS of U-238
Total XS of Fe-56
% diff (  18 E* points)
% diff (241 E* points)

1.E-03

1.E-01

1.E+01

1.E+03

1.E+03 1.E+04 1.E+05 1.E+06

Energy (eV)

C
ap

tu
re

 X
S

 (b
ar

n)

Capture XS of U-238
Total XS of Fe-56

Unresolved Resonance 
Energy Range of U-238

 The method used to represent the 
fission spectrum as a function of 
incident neutron energy was also 
improved by directly importing the 
fission spectrum matrix data of all 
fissionable isotopes from the 
ENDF/B files 
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SN2ND: Even-Parity Discrete Ordinates
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Very clear path to peta-scale computing capability
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SN2ND Iteration Scheme 

8

Fission source (power) iteration for the eigenvalue (or time-dep. or fixed source...)
Gauss-Siedel iteration over energy groups
Scattering iterations for the within-group scattering system
Conjugate gradient over the whole space-angle system
PETSc preconditioned conjugate gradient for each discrete ordinate

 
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  
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 Parallel hierarchy proceeds as energy, angle, and space in descending order

 At the lowest level, PETSc uses SSOR-preconditioned CG to solve the full spatial 
domain for a given angle and group.  This requires distributed sparse matrix storage 
of each SPD matrix.

 We are developing a multi-grid preconditioner at the fourth level to reduce sparse 
matrix storage requirements 

 We use DSA at the 3rd level to accelerate the scattering iterations

 We use Chebychev acceleration to reduce the outermost number of iterations

 Each level has dynamic error control to minimize effort in the calculation.
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SN2ND Parallel Performance used for Gordon-Bell Nomination
 Strong spatial scaling of 94% on BlueGene/P-ANL

9

Total 
Cores

Vertices/
Process

Total Time
(seconds)

Parallel
Efficiency

8,192 7,324 2,402 100%

16,384 3,662 1,312 92%

24,576 2,441 873 92%

32,768 1,831 637 94%

Mainly measurement
of PETSc

Strong scaling 
in angle is <75%

Diffusion equation needs
further partitioning

Total
Cores

4π 
Angles

Total Time
(seconds)

Weak
Scaling

16,512 32 1891 100%

37,152 72 1901 99%

66,048 128 1829 103%

103,200 200 2050 92%

148,608 288 2298 82%

222,912 432 2517 75%

Weak scaling 
in space means mesh 

refinement for us

Refinement of bad aspect ratio 
elements produced >95%

 Weak angle scaling of 75% on XT5. 76% on BlueGene/P 294,912 cores JSC
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MOCFE Development Path

10

 In 2009-2010 we rebuilt 2D and 3D MOCFE solver
– About 10 times faster than older version
– Easier to modify/maintain/develop
– Faster ray tracing with ability to treat all element 

types/orders
– Spatial domain decomposition

• More appropriate path for large scale parallelism
– Executed on 65,636 cores of BG/P at ANL

• Assumes trajectory splitting and communication 
of trajectory flux

• Vector space increases as the number of sub-
domains increase

• Needs significant research into preconditioner
– Flexible to utilize fundamental algorithms as part of 

multiple solver strategies
• Lattice geometry cross section generation
• 2D-1D thermal design tool (replace DeCART)
• Whole core 3-D transport solver
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Sample Meshes of MOCFE

VHTR MONJU
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 Region-dependent cross sections were generated in a 230-group structure using 
ENDF/B-VII data

 Whole core calculations were carried out with TWODANT and ERANOS
– TWODANT S24P3 and VARIANT P5P1 with MC2-3 cross sections

– ERANOS S16P3 with ECCO cross sections (1968 group slowing-down calculation)

 Deterministic results compared with VIM and MCNP5 Monte Carlo solutions

Criticality Benchmarks

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Flat
top-25

Flat
top-P

u

Flat
top-23

Godiva

Je
ze

bel-
240

Je
ze

bel-
23

Je
ze

bel

Bigten

ZPR-6/6A

ZPR-6/67

ZPPR-21
 A

ZPPR-21
 B

ZPPR-21
 C

ZPPR-21
 D

ZPPR-21
 E

ZPPR-21
 F

ZPPR-15
 L15

ZPPR-15
 L16

ZPPR-15
 L20

Monju (R
Z)

BFS-551

BFS-551
 vo

id

BFS-731

BFS-751
ABTR

Monju (H
ex

)

Di
ffe

re
nc

e 
in

 k
-e

ffe
ct

iv
e 

(%
)

MCC-3 (UFG) MCC-3 (HFG) ECCO (1968G)

LANL ZPR-6 ZPPR-21 ZPPR-15 BFS

 RMS difference between  
MC2-3/TWODANT and 
Monte Carlo solutions is 
0.14%

 Relatively large differences 
in ECCO/ERANOS results

– LANL small critical 
assemblies with large 
leakage 

– ZPPR-21 assemblies with 
no blankets and thick 
graphite reflector around 
core
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Criticality Benchmarks (cont’d)

 Comparison with the specified benchmark k-effective values with 1-σ 
uncertainties

0.980

0.985

0.990

0.995

1.000

1.005

1.010

FLATTOP-235

FLATTOP-P
u

FLATTOP-233

GODIVA

JE
ZEBEL-24

0

JE
ZEBEL-23

3

JE
ZEBEL

BIG
TEN

ZPR-6/6A

ZPR-6/7

ZPPR-21
 A

ZPPR-21
 B

ZPPR-21
 C

ZPPR-21
 D

ZPPR-21
 E

ZPPR-21
 F

BFS-73-1

k-
ef

fe
ct

iv
e

VIM
MCC-3
Benchmark

VIM MC2-3

< 1σ 13 10

1σ - 2σ 3 5

2σ - 3σ 1 2

Total 17 17



10/18/2010

NEAMS Fall 2010 PI Meeting
14

Advanced Burner Test Reactor Benchmark

 250 MWt numerical benchmark 
problem

 230G cross sections were generated 
with MC2-3

 VARIANT calculations up to P5P3

 Excellent agreement in the core 
multiplication factor between MC2-
3/VARIANT and MCNP5
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MCNP5
k-eff (a)

MC2-3 / VARIANT

Order k-eff (b)
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(PN–PN-1)
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(b – a)

1.03457 
± 0.00025

P3P0 1.03370 -148
P3P1 1.03293 -77 -226
P3P3 1.03320 27 -199
P5P0 1.03541 22
P5P1 1.03454 -88 -65
P5P3 1.03477 23 -42
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Criticality Benchmarks (Cont’d)

 ZPPR-15 Loadings 15, 16, and 20

– Drawer averaged 230 group cross sections from MC2-3 1D slab calculations

– UNIC calculation with L3T3 (32 directions for 4π) and P3 anisotropic scattering
 HFG cross sections resulted in better agreements of k-effective with MC solutions 
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ZPPR-15
Loading

VIM
(V)

SD MCNP5
(M)

SD MC2-3 UFG MC2-3 HFG

M–(V) M–(M) M–(V) M–(M)

L15 0.99981 12 0.99956 22 -346 -321 -193 -168

L16 0.99571 21 0.99523 24 -351 -303 -197 -149

L20 0.99780 12 0.99741 23 -313 -274 -158 -119
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 Loadings 104, 106, 120, and 132 of high Pu-
240 reactor physics benchmark

– Control rod worth measurements
– Sodium channel and BeO ring at the core center

ZPR-6 Assembly 7 Critical Experiments
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 MC2-3/SN2ND analyses
– 70 energy groups, 1M spatial meshes, 72 angular directions, P3 scattering order

ZPR6 Assembly 7 Critical Experiments (cont’d)

* Measurement uncertainty only 
* Combined uncertainty due to geometry and composition uncertainties 

estimated for the Loading 99 is ~0.080%

Loading 
104

Loading 
106

Loading 
120

Loading 
132

MC2-3/UNIC
1.00147 1.00134 1.00127 1.00016

0.075% 0.043% 0.028% -0.024%

MCNP5 
(as-built model)

1.00016
±0.00007

1.00049
±0.00007

0.99967
±0.00007

1.00040
±0.00007

-0.056% -0.042% -0.132% 0.000%

Measurement
1.00072

±0.00002
1.00091

±0.00003
1.00099

±0.00003
1.00040

±0.00002
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 Distribution of neutron flux from 10 MeV to 14.2 MeV for Loading 106

ZPR6 Assembly 7 Critical Experiments (cont’d)
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ZPR6-7 Foil Measurement Comparisons

 69 foil activation measurements were analyzed for each of four loadings

 Calculated reaction rates agreed very with the measurements except for a couple 
of depleted uranium capture rates near the BeO plates (in loadings 106 and 132) 

– Enhanced self-shielding of low energy resonances of U-238 (below 1 keV) 

 Additional studies are ongoing to account for surface sources in MC2-3 calculations 
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ZPR6-7 Foil Measurement Comparisons

 Foil reaction rates in the loading 106 with BeO plates around the central sodium 
drawer 
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Progress in VHTR Simulation

 Implementation of angular domain decomposition scheme in DeCART

 Generation of gamma production and interaction cross section libraries
– Neutron induced gamma production matrices for 261 isotopes in 238 neutron 

and 48 gamma groups

– Gamma interaction cross sections for 100 elements in 48 gamma groups

 Implementation of coupled neutron and gamma heating calculation 
capability

 Verification and validation tests of DeCART

– HTTR and VHTRC benchmark problems

 Validation study of CFD models using the core bypass flow experiments 
performed at Seoul National University 

 Refined CFD modeling to enable variable thermo-physical properties and 
evaluate effects of buoyancy driven flow and turbulence contributions

 Mesh sensitivity analyses for coupled DeCART/STAR-CD simulations
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Gamma Library and Transport Capabilities

 Gamma production and interaction libraries 
were generated using NJOY with ENDF/B-VII 
data

– Gamma production and neutron heating factors 
for 250 isotopes

– Gamma interaction and heating factors for 70 
elements

– Delayed gamma data: Th-232, U-233, U-235, U-
238, Pu-239, Pu-241

 Gamma transport calculation capability
– Coupled neutron and gamma heating 

calculation
– Preliminary calculation for 2D 1/6 core of VHTR 

with 48 neutron and 18 gamma groups
• Gamma contribution to the total power is 

~9.4% (7.6 % from fuel blocks, 0.7% from 
inner reflector graphite blocks, and 1.1% 
from outer reflector graphite blocks )
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First Criticality Tests of HTTR  
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 IAEA benchmark for 30 MWt HTTR 
– First criticality tests conducted in 1998 
– Large measurement uncertainties 

reported (2.0% for 24 column, and 3.6% 
for 30 column case)

– Specified born impurity (0.37 ppm) in 
reflector blocks is considered too low.     
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Temperature Coefficients of VHTRC
 IAEA benchmark for isothermal temperature coefficient measurements of VHTRC

– A graphite moderated critical assembly which has a core loaded with pin-in-block fuel of 
low enriched uranium and a graphite reflector.

– In the experiments, the assembly was first brought a critical state at room temperature, 
and then it was heated stepwise up to about 200 °C by using electric heaters.

– In the benchmark, the actual core boundary was truncated (e.g., cadmium sheets and 
heat insulator were neglected).      

Temp (°C) Experiment DeCART

25.5 – 71.2 -15.6 ± 0.4 -19.1

71.2 – 100.9 -17.9 ± 1.1 -17.6

100.9 – 150.5 -18.1 ± 0.9 -16.2

150.5 – 199.6 -17.7 ± 1.3 -14.7

25.5 – 199.6 -17.3 ± 0.3 -16.8

Isothermal Temperature Coefficient (pcm/°C)     
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Coupled DeCART/STAR-CD Simulation

 DeCART Model

– Axial discretization (in fuel)

• 30 MOC planes, 26.4 cm thick

• 2 CMFD subplanes, 13.2 cm thick

• 2nd order nodal diffusion (LPEN)

– Radial: 260k MOC regions/plane

– 8 azimuthal & 2 polar angles/octant

– 72 group VHTR library from ORNL

 STAR-CD Model

– 44M hexahedral cells total

• Axial layers 13.2 cm thick

– Previous standalone initialization

– Realizable k-e with law-of-the-wall 

– SIMPLE solver algorithm

– Rhie-Chow interpolation for pressure-
velocity coupling 

25
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Fuel Temperature Profile Near Core Outlet

T (K)

Coupled Neutronics and CFD Simulation
 Global balance residual (blue) and change in k-eff (pink)

– Cross section update following STAR-CD temperature update (green lines) 
upsets global residual

– Number of iterations between STAR-CD is reduced progressively
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Sensitivity Study of Control Rod Hole Models

 Reflector blocks at the inlet and outlet of the core have complex flow networks

– Lower reflector blocks partially block flow in control rod channels

– Actual design data is not available

 Simplify: straight channels

 Previous case: CR holes completely open

– Exaggeratedly high bypass flow rate

– Correspondingly high fuel temperature

 New case: CR holes completely blocked

– Opposite extreme for bypass flow rate

– Filled with solid with the same thermal conductivity as helium

 Coupled DeCART/STAR-CD simulations

– Only modest differences in power distribution

– Substantial difference in fuel temperature profile, 180K difference in peak 
temperature

27
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STAR-CD Predictions of Velocity Distribution

28

Fully Open Control Rod Holes
(Peak Velocity in CR Hole ~ 80m/s)

Fully Closed Control Rod Holes

Selected Column 
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DeCART/STAR-CD Predictions of Fuel Power Density 
in Selected Column

29

Fully Open Control Rod Holes Fully Closed Control Rod Holes

q’’’
(W/m3)

Open Closed
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DeCART/STAR-CD Predictions of Fuel Temperature 
in Selected Column

30

Fully Open Control Rod Holes
(Global Peak 1880K)

Fully Closed Control Rod Holes
(Global Peak 1700K)

T (K)

Open Closed
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 Advanced Reactor Concepts
– Incorporate the kinetics codes DIF3D-K and VARIANT-K into SHARP 

• Modernize DIF3D-K and VARIANT-K to be compatible with SHARP

• Support the coupled system and neutronics analysis for the challenge 
problem #1

– Deliver a production version of the multigroup cross section generation code 
MC2-3 with ENDF/B-VII libraries

• Meet continual industry request (TerraPower, Westinghouse, and GE)

 Small Modular Reactor
– Improve the performances of the high-fidelity SN2ND and MOC solvers of UNIC 

and implement a kinetics capability in SN2ND

• Will eventually provide high-fidelity analysis capabilities for SMR

– Develop “intermediate” fidelity methods for routine design calculations (< 1000 
processors) by fully integrating the DeCART functionalities into UNIC

• For SMR designs with conventional PWR or BWR fuel assemblies, the NNR 
(Numerical Nuclear Reactor) system can readily be applied   

Plans for FY2011
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BWR Fuel Assembly Calculations with NNR

Pin Power Density (MW/cc) Void Fraction
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Avg. Fuel 
TemperaturePin Power

PWR Whole-Core Calculations with NNR
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