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(Some ?) Components of the Uncertainty 
Quantification.

 Uncertainty analysis of model predictions: given data about uncertainty parameters 

and a code that creates output from it                        characterize y. 

 Validation: Use data to test whether the UA model is appropriate or otherwise fit it or both. 

 Challenge one: create model for                       from data. (Mihai’s definition of UQ) It does not 
need to be probabilistic (see Helton and Oberkampf RESS special issue) but it tends to be. What 
is the statistical model*? 

 Challenge two: uncertainty propagation. Since        is expensive to compute, we cannot expect to 
compute a statistic of y very accurately from direct simulations alone (and there is also curse of 
dimensionality; exponential growth of effort with dimension). How do I propagate the model if 
the code is very computationally intensive? 

 Challenge three: validation of uncertainty propagation model; or fitting/validation/testing. What 
are the statistics I choose to test? 



Challenge 2: Faster Uncertainty Propagation by 
Using Derivative Information?

 Uncertainty propagation requires multiple runs of a possibly expensive code. 

 On the other hand, adjoint differentiation adds a lot more information per unit of cost (O(p), 
where p is the dimension of the uncertainty space; though needs lots of memory). 

 Q: Can I use derivative information in uncertainty propagation to accelerate its precision per unit 
of computing time. 

 We believe the answer is yes. 

 Q: How? 

 This is what this presentation is about. 



Outline

 1. Polynomial regression with derivative PRD information: Uncertainty propagation using 
sensitivity information. 

 2. Obtaining derivative information: Automatic Differentiation of Codes with Substantial Legacy 
components. 

 3. PRD-based uncertainty propagation: Numerical examples. 

 4. What is a good basis in PRD? Limitations and Construction of Tensor Product Bases. Benefits.

If time permits

 5. Gaussian Processes for Quantifying Uncertainty Propagation Error. 

 6. Model Reduction 



1. Polynomial regression with derivative 
PRD information: Uncertainty propagation 
using sensitivity information. 



Why a hybrid sensitivity – sampling method for 
UQ? 

 Brute force sampling suffers from the curse of dimensionality: it’s efficiency decreases 
exponentially with the effective dimension of the uncertainty space. 

 On the other hand, sensitivity in UQ provides a lot of information but tends to be used ONLY in 
conjunction with linearization models. As we will demonstrate, this may not go the distance. 

 It is reasonable to assume that  a hybrid approach will inherit the strengths of both. But how to 
do it? 

 Our answer: polynomial regression with derivative information (PRD). 



Uncertainty quantification, subject models
 Model I. Matlab prototype code: a steady-state 3-dimensional 

finite-volume model of the reactor core, taking into account heat

transport and neutronic diffusion. Parameters with uncertainty are

the material properties: heat conductivity, specific coolant heat,

heat transfer coefficient, and neutronic parameters: fission,

scattering, and absorbtion-removal cross-sections. Chemical 

non-homogenuity between fuel pins can be taken into account.

Available experimental data is parameterized by 12-66 quantifiers.

 Model II. MATWS, a functional subset of an industrial complexity

code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely 

documented.

MATWS was used, in combination with a simulation tool Goldsim, 

to model nuclear reactor accident scenarios. The typical analysis

task is to find out if the uncertainty resulting from the error in 

estimation of neutronic reactivity feedback coefficients is sufficiently

small for confidence in safe reactor temperatures. The uncertainty is 

described by 4-10 parameters.



Representing Uncertainty

 We use a hierarchical structure. Given a generic model with uncertainty

with model state 

intermediate parameters and inputs 

that include errors

An output of interest is expressed by the merit function

The uncertainty is described by a set of stochastic quantifiers 

 We redefine the output as a function of uncertainty quantifiers, 

and seek to approximate the unknown function 

)()),(1()(
0),(

TJJTRTRR
RTF

=∆+⋅=
=

α
),...,,( 21 nTTTT = ),...,,( 21 NRRRR =

),...,,( 21 NRRRR ∆∆∆=∆
)(TJ

),...,,( 21 mαααα =

)(:)( TJ=ℑ α
)(αℑ



Polynomial Regression with Derivatives, PRD
 We approximate the unknown response function by polynomial regression based on a small set of model 

evaluations. Both merit function outputs and merit function derivatives with respect to uncertainty 
quantifiers are used as fitting conditions.

 PRD procedure: 

- choose a basis of multivariate polynomials  

the unknown function is then approximated by an expansion 

- choose training set

- evaluate the model and its derivatives for each point in the training set

- construct a regression matrix. Each row consists of either the values of the basis polynomials,

or the values of derivatives of basis polynomials, at a point in the training set.

- solve the regression matrix (in the least-squares sense) to find coefficients 

 Questions (for later):

- How to best choose the polynomial basis?

- How to obtain gradient information at computational cost comparable with that of a model run?

- What to do if dimensionality of uncertainty space is very high?
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Polynomial Regression with Derivatives, PRD

 PRD procedure, 
regression/collocation*  equations:

 Note: the only interaction with the 

computationally expensive model

is on the right side!

 The polynomial regression 
approach without derivative 
information would  provide (n+1)
times LESS rows. 

 The overall computational savings  
depend on how cheaply the  
derivatives can be computed
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Cost versus benefit of using gradient information. 
 Theory: Cost of gradient evaluation can be at most 5 times larger than cost of function evaluation. 

Therefore relative efficiency of using gradient information versus using one more sample point: at least 
n/5. 

 This bound is achieved by adjoint calculations or reverse automatic differentiation mode. 

 Sometimes, the bound is much smaller. Example: Coupling in multiphysics achieved by operator 
splitting/Gauss Seidel since Newton method may not converge. Then compute adjoint at converged 
point.  

 When instrumenting code for gradient with AD we are somewhere between intrusive and non-intrusive 
methods for UQ. Clearly not as simple as brute force sampling, but not as intrusive as Galerkin stochastic 
FEM methods either.  But payoff of same accuracy for fewer samples is a great driver. 

 In principle, can be operated without knowing what the code does, in practice, the latter helps.   



2. Obtaining derivative information: 
Automatic Differentiation of Codes with 
Substantial Legacy components. 



PRD, computation of derivatives
 Hand-coding derivatives is error-prone, has large development cost, code maintenance is a problem. 

 Finite difference approximations introduce truncation errors, and Cost of gradient ~ Dimension X Cost of 
the function, and advantage of adjoints is lost. 

 For most applied purposes, a more promising approach is Automatic (Algorithmic) Differentiation, AD. It 
also uses the chain-rule approach, but with minimal human involvement.

 Ideally, the only required processing is to identify inputs and outputs of interest, and resolve the errors at 
compilation of the model augmented with AD. 



Why not simply discard codes with legacy components? 

 Since, focus is on new code. When new code is target, great, just press the button. Though even there 
the curse of the dimensionality requires some initial thought on whether/how gradient info will be 
obtained as a part of the design process. But what if “new code” is not the case?

 Reality: 

 High resolution codes are crucial for filling uncertainty gaps; but it is unlikely that system level 
assessments will be carried out with the highest resolution codes even if we have all the available 
foreseeable computing power. Or that one can simply run them at low resolution*. 

 Also, new codes make take long time to get accepted at face value in a regulatory environment. 

 Plus, we will be forced at least to validate any uncertainty findings against a standard code, to 
demonstrate that at least to compatible resolutions the results are similar. 

 A possible future: A suite of codes of decreasing resolution but increasing system complexity, with UQ 
propagating parameters from one to the others.  With a true-and-tested systems code at one end. 

 In any case, existing tools are likely to need to be at least sampled for comparison; and they are not 
spared the curse of dimensionality, and they need acceleration of propagation as provided here. Thus it 
will help tremendously if they are instrumented with gradients. 

 Plus, it helps to know if PRD helps with a realistic uncertainty setting.  



Automatic Differentiation, AD
 AD is based on the fact that any program can be viewed as a finite sequence of elementary operations, 

the derivatives of which are known. A program P implementing the function J can be parsed into a 
sequence of elementary steps:

The task of AD is to assemble a new program P' to compute the derivative. In forward mode:

 In the forward (or direct) mode, the derivative is assembled by the chain rule following computational 
flow from an input of interest to all outputs. We are more interested in the reverse (or adjoint) mode that 
follows the reversed version of the computational flow from an output to all inputs:

In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to multiple runs 
required by the direct mode.

 For inherently non-differentiable components of code, it is possible to construct a smooth interpolation. 
THIS is one of the many cases where it helps UQ to be integrated with a physics team which we  believe 
and we practice (We will not discuss nondifferentiability here). 
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AD tools, Fortran
 TAF (FastOpt)

- Commerical tool

- Support for almost all of Fortran 95

- Used extensively in geophysical sciences applications

 Tapenade

- Support for many Fortran 95 features

- Developed by a team with extensive complier experience

 OpenAD/F

- Support for many Fortran 95 features

- Developed by a team with expertise in combinatorial algorithms, compilers, software engineering, and 
numerical analysis

- Development driven by climate modeling and astrophysics applications

 ADIFOR

- Mature, very robust tool. Support for all of Fortran 77 :forward and adjoint modes

- Hundreds of users, over 250 citations



AD tools, Capabilities
 Fast O(1) computation of 

- Gradient (in adjoint mode)

- Derivative matrix-vector products

 Efficient computation of full Jacobians and Hessians, able to exploit sparsity, low-rank structure

 Efficient high-order directional derivative computation

 Minuses: it is still not a mature technology (after 30 years !!!) except for very specific cases (e.g codes 
written entirely in Fortran 77+ STANDARD).

 We believe in (and we practice) close integration with an AD development team (Jean Utke, Mihai Alexe)  



Applying AD to code with major legacy components
 We investigated the following question: are AD tools now at a stage where they can provide derivative 

information for realistic nuclear engineering codes? Many models of interest are complex, sparsely 
documented, and developed according to older (Fortran 77) standards.

 Based on our experience with MATWS, the following (Fortran 77) features make application of AD 
difficult:

 Not supported by AD tools (since they are nonstandard) /need to be changed.

• machine-dependence code sections need to be removed (i/o)

• Direct memory copy operations needs to be rewritten as explicit operations (when LOC is used)

• COMMON blocks with inconsistent sizes between subroutines need to be renamed

• Subroutines with variable number of parameters need to be split into separate subroutines

 EQUIVALENCE, COMMON, IMPLICIT* definitions are supported by most tools though they have to be 
changed for some (such as OpenAD). (for Open AD statement functions need to be replaced by 
subroutine definitions, they are not supported in newer Fortran)

 Note that the problematic features we encountered have to do with memory allocation and 
management and i/o, not mathematical structure of the model! We expect that (differentiable) 
mathematical sequences of any complexity can be differentiated.



Validation of AD derivative calculation
 Model II, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the fuel and 

coolant maximum temperatures with respect to the radial core expansion coefficient ,obtained by 
different AD tools, and compared with the Finite Differences approximation, FD. 

All results agree with FD within 0.001% (and almost perfectly with each other).

AD tool Fuel temperature derivative, 
K

Coolant temperature derivative, 
K

ADIFOR 
18312.5474227 17468.4511373

OpenAD/F
18312.5474227 17468.4511372

TAMC
18312.5474248 17468.4511392

TAPENADE
18312.5474227 17468.4511372

FD
18312.5269537 17468.4315994



3. PRD-based uncertainty propagation: 
Numerical examples. 



PRD UQ,  tests on subject models 1.
 Model I, Matlab prototype code. Output of interest: maximal fuel centerline temperature. 

 We show performance of a version with 12 (most important) uncertainty quantifiers. Performance of 
PRD  approximation with full and truncated basis is compared against random sampling approach (100 
samples)*:

* derivative evaluations

required ~150%  overhead

Sampling Linear 
approximation

PRD, full 
basis

PRD, 
truncated 
basis

Full model runs 100 1* 72* 12*

Output range, K 2237.8
2460.5

2227.4
2450.0

2237.8
2460.5

2237.5
2459.6

Error range, K -10.38
+0.01

-0.02
+0.02

-0.90
+0.90

Error st. 
deviation

2.99 0.01 0.29



PRD, basis truncation
 Issue: we would like to use high-order polynomials to represent non-linear relationships in the model. 

But, even with the use of derivative information, the required size of the training set grows rapidly (curse 
of dimensionality in spectral space)

 We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis is already 
available, for free!) and use an incomplete basis, i.e. polynomials of high degree only in variables of high 
importance. This allows the use of some polynomials of high degree (maybe up to 5?)

 Several versions of the heuristic are available, we choose to fit a given computational budget on the 
evaluations of the model to form a training set.

 In our first experiments, we use either a complete basis of order up to 3, or its truncated version allowing 
the size of training set to be within 10-50 evaluations.

 An even better scheme - adaptive basis truncation based on stepwise fitting is developed later, 
simultaneously with conditions for better algebraic form of multivariate basis, 



Uncertainty quantification,  tests on subject models
 Model II, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty in an 

accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical distribution of peak 
fuel temperature.

 We reproduce the distribution of the outputs correctly*; 

regression constructed on 50 model 

evaluations thus replaces analysis 

with 1,000 model runs. We show 

cumulative distribution of the 

peak fuel temperature. 

 Note that the PRD approximation 

is almost entirely within the 95% 

confidence interval of the 

sampling-based results. 

 Surface response, error model

in progress (though control variate done)



4. What is a good basis in PRD?



PRD, selection of better basis
 We inherited the use of Hermite multivariate polynomials as basis from a related method: Stochastic 

Finite Elements expansion.

 While performance of PRD so far is acceptable, Hermite basis may not be a good choice for constructing 
a regression matrix with derivative information; it causes poor condition number of linear equations (of 
the Fischer matrix).

 Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability 
measure ρ; Gaussian measure is the specific choice):

 We formulate new orthogonality conditions:

and ask the question: how does a good basis with respect to this inner product looks like?

 Surprise: We cannot construct tensor product bases of arbitrary order. We give very tight sufficient 
conditions and use them. 

 Observation: This is a general principle, so it may make sense to do implement it in a crosscut fashion. 
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PRD, selection of better basis
 Model I, Matlab prototype code. 

We compare the setup of PRD 
method using Hermite polynomial 
basis and the improved basis. We 
observe the improvement in the 
distribution of singular values of the 
collocation matrix.

 We compare numerical 
conditioning for Hermite, Legendre 
polynomials, and the basis based 
on new orthogonality conditions.

 We have 10^10 improvement in the 
condition number of the Fischer 
matrix *!!! In principle this results 
in much more robustness of the 
matrix. 

 This will offer us substantial   
flexibility in creating the PRD 
model.



PRD, adaptive (stepwise fitting) basis truncation
 We use a stepwise fitting procedure (based on F-test):

1. Create the PRD model as an expansion in the starting set of polynomials

2. Add one (estimated as most likely) polynomial to the set. An expansion term currently not in the model is 
added if, out of all candidates, it has the largest likelihood that it would have non-negligible coefficient if 
added to model.

3. Remove one (estimated as least likely) polynomial from the set. An expansion term in the model is 
removed if it has the highest likelihood to have negligible coefficient.

 It is possible to truncate the model starting with a full basis set (of fixed maximal polynomial order) or 
from an empty basis set (all polynomials of fixed maximal order are candidates to be added). 

(Hermite basis error on 20 samples) (Orthogonal basis error on 20 samples, log_10 plot)

 Orthogonal basis created starting “with nothing” in the expansion results in precision of up to 0.01  
degree K (compare with errors of >10 K by linear model).



5. Gaussian Processes for Quantifying 
Uncertainty Propagation Error. 



PRD: need for enhancement, need for error model

 PRD approach has been shown to be a powerful tool, (precision of <0.1% ? For a nonlinear 12-
dimensional model? Based on a training set of size 10?)

 But it does not address the bias introduced and the clearly when you fit a model PRD, which one knows is 
not exactly correct. Also, the correlation model is clearly incorrect. 

 We thus need to do uncertainty quantification on the uncertainty propagation process. 

 We start from good surrogate model –as we demonstrated -- which we enhance with a Gaussian Process 
model and fit it with max likelihood. If the covariance is smooth enough, I have a consistent model for 
function and gradient error. 

 Then, we use the posterior prediction (kriging) at the test points



Gaussian-processes based error modeling, preview
 Notation: GP – Gaussian Processes; GEK – gradient-enhanced Kriging

 In the framework of GP we assume that the response of the system can be represented as a Gaussian 
process with explicit mean function and specified covariance function governed by a set of parameters 
(hyperparameters). But Ordinary kriging by itself is not immune to curse of dimensionality !

 We use an explicit mean model (universal kriging), which, if it is a good approximation, drastically reduces 
exposure to the curse. Finding values of hyperparameters leads to explicit covariance function (an 
algebraic form has to be assumed).

 Covariance matrix on the training set now also includes covariances between points in the uncertainty 
space, between points and gradients of the output function, and between gradients and gradients.



Gaussian Processes approach, technical details:
 We assume that the response of the system can be represented as a Gaussian process with explicit mean 

function and specified covariance function governed by a set of parameters (hyperparameters):

 Covariance matrix with derivative information is given by a block form:

 Regression parameters are computed as   

or                                                      , with 

 The mean and variance of the model are now predicted as 

 We now need to assume a functional form of the covariance function. Many options are available. 
According to Kriging approach, covariance is a function of distance between two points. 

 For example: squared exponential form:

 Other forms: cubic splines, Matern functions, etc
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Gaussian Processes approach, technical details:
 With the functional form of covariance specified, the hyperparameters      are determined by maximizing 

the marginal likelihood function for the data. The logarithm of the likelihood is given by:

 The optimization is carried out using standard tools (L-BFGS + active set algorithm).

 Computationally expensive parts of GP process: inverse of the covariance matrix, optimization problem, 
and very high resolution sampling. No part of the GP process scales at high resolution in current 
implementations, due to reliance on explicit, dense Cholesky. 

 Both can be accelerated in future work: 

 Cholesky of covariance matrix, matrix- calculation of  Q^0.5*N(0,I) (Chen, Anitescu, Saad) – not 
really attacked before. 

 Better optimization solver?

 But in current setup, expensive pat is still sampling the code. 
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Gaussian Processes approach, tests on subject model
 We test the approach on training data obtained by running Model I: nuclear reactor core prototype.

 The training set is < 10 samples. Verification set is 500 samples.

 Comparison of error for GEK and PRD models:

 Fraction of actual validation set outputs that fall within 1,2,3 standard deviations 

of the mean according to GP prediction:

 Correlation between actual error and predicted error:

Mean GEK error Mean PRD error Maximal GECK error Maximal PRD error

0.1154 0.47118 0.70207 2.194

+/- 1 st. deviation +/- 2 st. deviations +/- 3 st. deviations

Predicted on data 
set: 69.0% 88.2% 95.0%

Mean error 
correlation

Maximal error 
correlation

Fraction of error 
covered

Predicted on data 
set: 0.965 0.913 95.0%



Gaussian Processes approach, test on subject model
 Point-wise error prediction: 

GP-PRD regression based on 8 training points.

 Point-wise error prediction: GP-PRD regression 

based on 6 training points.



Gaussian Processes, preliminary conclusions:
 Gradient-enhanced Kriging provides accurate representations of learned function outputs space, with 

limited number of function samples (6,8 !!).

 So, if done correctly, maybe it can work when I will be able to sample a code that needs 3 months to 
complete a sample run. 

 The conditional variance of GEK model provides reasonable confidence bounds on prediction. (Note: 
error prediction always positively correlated with actual error in the domain).

 As with PRD, the gradient information greatly reduces the number of samples and computational effort 
needed for the same accuracy level.

 Future work includes: propagation and approximation of adjoint derivative information in high-
resolution, high-efficiency calculations (including multiprocessor architectures) within industrial 
complexity nuclear engineering codes.



Conclusions
 PRD is a first step to a larger effort in learning the behavior of complex models by extracting more 

information from fewer sample runs.

 PRD outperforms classical methods of uncertainty quantification.

 An important part of PRD is Automatic Differentiation; it can be applied to codes of *industrial* 
complexity. 

 We have shown that basis choice makes a difference. 

 Preliminary results: Gaussian Processes and Model Reduction in PRD help with reducing uncertainty and 
number of samples needed for assessment. 

 Future (dependent on resources): 

 Advance PRD/GP and PRD/MR to a technology.

 Extend AD to all of SASSYS and beyond.

 How do we apply it to large, time-dependent codes (since reverse mode is memory intensive)?
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