
Polynomial Regression with Derivative
Information for Uncertainty Quantification

of Nuclear Modeling Simulations.

Mihai Anitescu and Oleg Roderick,

Jean Utke, Paul Hovland (MCS, Argonne)
Thomas Fanning (NE, Argonne)

Also acknowledging the work of Mihai Alexe (Virginia Tech), Brian Lockwood (Wyoming, CSGF)
and Yiou Li (IIT)

NEAMS PI meeting October 2010

(Some ?) Components of the Uncertainty
Quantification.

 Uncertainty analysis of model predictions: given data about uncertainty parameters

and a code that creates output from it characterize y.

 Validation: Use data to test whether the UA model is appropriate or otherwise fit it or both.

 Challenge one: create model for from data. (Mihai’s definition of UQ) It does not
need to be probabilistic (see Helton and Oberkampf RESS special issue) but it tends to be. What
is the statistical model*?

 Challenge two: uncertainty propagation. Since is expensive to compute, we cannot expect to
compute a statistic of y very accurately from direct simulations alone (and there is also curse of
dimensionality; exponential growth of effort with dimension). How do I propagate the model if
the code is very computationally intensive?

 Challenge three: validation of uncertainty propagation model; or fitting/validation/testing. What
are the statistics I choose to test?

Challenge 2: Faster Uncertainty Propagation by
Using Derivative Information?

 Uncertainty propagation requires multiple runs of a possibly expensive code.

 On the other hand, adjoint differentiation adds a lot more information per unit of cost (O(p),
where p is the dimension of the uncertainty space; though needs lots of memory).

 Q: Can I use derivative information in uncertainty propagation to accelerate its precision per unit
of computing time.

 We believe the answer is yes.

 Q: How?

 This is what this presentation is about.

Outline

 1. Polynomial regression with derivative PRD information: Uncertainty propagation using
sensitivity information.

 2. Obtaining derivative information: Automatic Differentiation of Codes with Substantial Legacy
components.

 3. PRD-based uncertainty propagation: Numerical examples.

 4. What is a good basis in PRD? Limitations and Construction of Tensor Product Bases. Benefits.

If time permits

 5. Gaussian Processes for Quantifying Uncertainty Propagation Error.

 6. Model Reduction

1. Polynomial regression with derivative
PRD information: Uncertainty propagation
using sensitivity information.

Why a hybrid sensitivity – sampling method for
UQ?

 Brute force sampling suffers from the curse of dimensionality: it’s efficiency decreases
exponentially with the effective dimension of the uncertainty space.

 On the other hand, sensitivity in UQ provides a lot of information but tends to be used ONLY in
conjunction with linearization models. As we will demonstrate, this may not go the distance.

 It is reasonable to assume that a hybrid approach will inherit the strengths of both. But how to
do it?

 Our answer: polynomial regression with derivative information (PRD).

Uncertainty quantification, subject models
 Model I. Matlab prototype code: a steady-state 3-dimensional

finite-volume model of the reactor core, taking into account heat

transport and neutronic diffusion. Parameters with uncertainty are

the material properties: heat conductivity, specific coolant heat,

heat transfer coefficient, and neutronic parameters: fission,

scattering, and absorbtion-removal cross-sections. Chemical

non-homogenuity between fuel pins can be taken into account.

Available experimental data is parameterized by 12-66 quantifiers.

 Model II. MATWS, a functional subset of an industrial complexity

code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely

documented.

MATWS was used, in combination with a simulation tool Goldsim,

to model nuclear reactor accident scenarios. The typical analysis

task is to find out if the uncertainty resulting from the error in

estimation of neutronic reactivity feedback coefficients is sufficiently

small for confidence in safe reactor temperatures. The uncertainty is

described by 4-10 parameters.

Representing Uncertainty

 We use a hierarchical structure. Given a generic model with uncertainty

with model state

intermediate parameters and inputs

that include errors

An output of interest is expressed by the merit function

The uncertainty is described by a set of stochastic quantifiers

 We redefine the output as a function of uncertainty quantifiers,

and seek to approximate the unknown function

)()),(1()(
0),(

TJJTRTRR
RTF

=∆+⋅=
=

α
),...,,(21 nTTTT =),...,,(21 NRRRR =

),...,,(21 NRRRR ∆∆∆=∆
)(TJ

),...,,(21 mαααα =

)(:)(TJ=ℑ α
)(αℑ

Polynomial Regression with Derivatives, PRD
 We approximate the unknown response function by polynomial regression based on a small set of model

evaluations. Both merit function outputs and merit function derivatives with respect to uncertainty
quantifiers are used as fitting conditions.

 PRD procedure:

- choose a basis of multivariate polynomials

the unknown function is then approximated by an expansion

- choose training set

- evaluate the model and its derivatives for each point in the training set

- construct a regression matrix. Each row consists of either the values of the basis polynomials,

or the values of derivatives of basis polynomials, at a point in the training set.

- solve the regression matrix (in the least-squares sense) to find coefficients

 Questions (for later):

- How to best choose the polynomial basis?

- How to obtain gradient information at computational cost comparable with that of a model run?

- What to do if dimensionality of uncertainty space is very high?

Ψq (α){ }
∑ Ψ≈ℑ q qqx)()(αα

{ }),...,,(; 21
i
n

ii
iAA ααα=

qx

Polynomial Regression with Derivatives, PRD

 PRD procedure,
regression/collocation* equations:

 Note: the only interaction with the

computationally expensive model

is on the right side!

 The polynomial regression
approach without derivative
information would provide (n+1)
times LESS rows.

 The overall computational savings
depend on how cheaply the
derivatives can be computed

ℑ

ℑ

ℑ
ℑ

ℑ

ℑ

ℑ
ℑ

=⋅

ΨΨ

ΨΨ

ΨΨ
ΨΨ

ΨΨ

ΨΨ

ΨΨ
ΨΨ

m

M

M

m

m

M

m

M

MM

mm

d
Ad

A

d
Ad
A

d
Ad

d
Ad

d
Ad
A

x

d
Ad

d
Ad

AA

d
Ad

d
Ad

AA
d

Ad
d

Ad

d
Ad

d
Ad

d
Ad

d
Ad

AA

α

α

α

α

α

αα

αα

αα

αα

αα

)(

)(

)(
)(

)(

)(

)(
)(

)()(

)()(

)()(
)()(

)()(

)()(

)()(
)()(

1

2
2

1

2

1
1

1
1

21

21

1

22

1

21
2221

1211

2

12

2

11
1

12

1

11
1211

Cost versus benefit of using gradient information.
 Theory: Cost of gradient evaluation can be at most 5 times larger than cost of function evaluation.

Therefore relative efficiency of using gradient information versus using one more sample point: at least
n/5.

 This bound is achieved by adjoint calculations or reverse automatic differentiation mode.

 Sometimes, the bound is much smaller. Example: Coupling in multiphysics achieved by operator
splitting/Gauss Seidel since Newton method may not converge. Then compute adjoint at converged
point.

 When instrumenting code for gradient with AD we are somewhere between intrusive and non-intrusive
methods for UQ. Clearly not as simple as brute force sampling, but not as intrusive as Galerkin stochastic
FEM methods either. But payoff of same accuracy for fewer samples is a great driver.

 In principle, can be operated without knowing what the code does, in practice, the latter helps.

2. Obtaining derivative information:
Automatic Differentiation of Codes with
Substantial Legacy components.

PRD, computation of derivatives
 Hand-coding derivatives is error-prone, has large development cost, code maintenance is a problem.

 Finite difference approximations introduce truncation errors, and Cost of gradient ~ Dimension X Cost of
the function, and advantage of adjoints is lost.

 For most applied purposes, a more promising approach is Automatic (Algorithmic) Differentiation, AD. It
also uses the chain-rule approach, but with minimal human involvement.

 Ideally, the only required processing is to identify inputs and outputs of interest, and resolve the errors at
compilation of the model augmented with AD.

Why not simply discard codes with legacy components?

 Since, focus is on new code. When new code is target, great, just press the button. Though even there
the curse of the dimensionality requires some initial thought on whether/how gradient info will be
obtained as a part of the design process. But what if “new code” is not the case?

 Reality:

 High resolution codes are crucial for filling uncertainty gaps; but it is unlikely that system level
assessments will be carried out with the highest resolution codes even if we have all the available
foreseeable computing power. Or that one can simply run them at low resolution*.

 Also, new codes make take long time to get accepted at face value in a regulatory environment.

 Plus, we will be forced at least to validate any uncertainty findings against a standard code, to
demonstrate that at least to compatible resolutions the results are similar.

 A possible future: A suite of codes of decreasing resolution but increasing system complexity, with UQ
propagating parameters from one to the others. With a true-and-tested systems code at one end.

 In any case, existing tools are likely to need to be at least sampled for comparison; and they are not
spared the curse of dimensionality, and they need acceleration of propagation as provided here. Thus it
will help tremendously if they are instrumented with gradients.

 Plus, it helps to know if PRD helps with a realistic uncertainty setting.

Automatic Differentiation, AD
 AD is based on the fact that any program can be viewed as a finite sequence of elementary operations,

the derivatives of which are known. A program P implementing the function J can be parsed into a
sequence of elementary steps:

The task of AD is to assemble a new program P' to compute the derivative. In forward mode:

 In the forward (or direct) mode, the derivative is assembled by the chain rule following computational
flow from an input of interest to all outputs. We are more interested in the reverse (or adjoint) mode that
follows the reversed version of the computational flow from an output to all inputs:

In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to multiple runs
required by the direct mode.

 For inherently non-differentiable components of code, it is possible to construct a smooth interpolation.
THIS is one of the many cases where it helps UQ to be integrated with a physics team which we believe
and we practice (We will not discuss nondifferentiability here).

)))((...(: 11 αfffJP kk −=

ik

k

k

k
i

f
f
f

f
fJP

αα ∂
∂

⋅⋅
∂
∂
⋅

∂
∂

=∇
−

−

−

1

2

1

1
...)(:'

T

k

k
TT

f
f

f
ffJP

∂
∂

⋅⋅

∂
∂

⋅

∂
∂

=∇
−11

21 ...)(:'
αα

AD tools, Fortran
 TAF (FastOpt)

- Commerical tool

- Support for almost all of Fortran 95

- Used extensively in geophysical sciences applications

 Tapenade

- Support for many Fortran 95 features

- Developed by a team with extensive complier experience

 OpenAD/F

- Support for many Fortran 95 features

- Developed by a team with expertise in combinatorial algorithms, compilers, software engineering, and
numerical analysis

- Development driven by climate modeling and astrophysics applications

 ADIFOR

- Mature, very robust tool. Support for all of Fortran 77 :forward and adjoint modes

- Hundreds of users, over 250 citations

AD tools, Capabilities
 Fast O(1) computation of

- Gradient (in adjoint mode)

- Derivative matrix-vector products

 Efficient computation of full Jacobians and Hessians, able to exploit sparsity, low-rank structure

 Efficient high-order directional derivative computation

 Minuses: it is still not a mature technology (after 30 years !!!) except for very specific cases (e.g codes
written entirely in Fortran 77+ STANDARD).

 We believe in (and we practice) close integration with an AD development team (Jean Utke, Mihai Alexe)

Applying AD to code with major legacy components
 We investigated the following question: are AD tools now at a stage where they can provide derivative

information for realistic nuclear engineering codes? Many models of interest are complex, sparsely
documented, and developed according to older (Fortran 77) standards.

 Based on our experience with MATWS, the following (Fortran 77) features make application of AD
difficult:

 Not supported by AD tools (since they are nonstandard) /need to be changed.

• machine-dependence code sections need to be removed (i/o)

• Direct memory copy operations needs to be rewritten as explicit operations (when LOC is used)

• COMMON blocks with inconsistent sizes between subroutines need to be renamed

• Subroutines with variable number of parameters need to be split into separate subroutines

 EQUIVALENCE, COMMON, IMPLICIT* definitions are supported by most tools though they have to be
changed for some (such as OpenAD). (for Open AD statement functions need to be replaced by
subroutine definitions, they are not supported in newer Fortran)

 Note that the problematic features we encountered have to do with memory allocation and
management and i/o, not mathematical structure of the model! We expect that (differentiable)
mathematical sequences of any complexity can be differentiated.

Validation of AD derivative calculation
 Model II, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the fuel and

coolant maximum temperatures with respect to the radial core expansion coefficient ,obtained by
different AD tools, and compared with the Finite Differences approximation, FD.

All results agree with FD within 0.001% (and almost perfectly with each other).

AD tool Fuel temperature derivative,
K

Coolant temperature derivative,
K

ADIFOR
18312.5474227 17468.4511373

OpenAD/F
18312.5474227 17468.4511372

TAMC
18312.5474248 17468.4511392

TAPENADE
18312.5474227 17468.4511372

FD
18312.5269537 17468.4315994

3. PRD-based uncertainty propagation:
Numerical examples.

PRD UQ, tests on subject models 1.
 Model I, Matlab prototype code. Output of interest: maximal fuel centerline temperature.

 We show performance of a version with 12 (most important) uncertainty quantifiers. Performance of
PRD approximation with full and truncated basis is compared against random sampling approach (100
samples)*:

* derivative evaluations

required ~150% overhead

Sampling Linear
approximation

PRD, full
basis

PRD,
truncated
basis

Full model runs 100 1* 72* 12*

Output range, K 2237.8
2460.5

2227.4
2450.0

2237.8
2460.5

2237.5
2459.6

Error range, K -10.38
+0.01

-0.02
+0.02

-0.90
+0.90

Error st.
deviation

2.99 0.01 0.29

PRD, basis truncation
 Issue: we would like to use high-order polynomials to represent non-linear relationships in the model.

But, even with the use of derivative information, the required size of the training set grows rapidly (curse
of dimensionality in spectral space)

 We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis is already
available, for free!) and use an incomplete basis, i.e. polynomials of high degree only in variables of high
importance. This allows the use of some polynomials of high degree (maybe up to 5?)

 Several versions of the heuristic are available, we choose to fit a given computational budget on the
evaluations of the model to form a training set.

 In our first experiments, we use either a complete basis of order up to 3, or its truncated version allowing
the size of training set to be within 10-50 evaluations.

 An even better scheme - adaptive basis truncation based on stepwise fitting is developed later,
simultaneously with conditions for better algebraic form of multivariate basis,

Uncertainty quantification, tests on subject models
 Model II, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty in an

accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical distribution of peak
fuel temperature.

 We reproduce the distribution of the outputs correctly*;

regression constructed on 50 model

evaluations thus replaces analysis

with 1,000 model runs. We show

cumulative distribution of the

peak fuel temperature.

 Note that the PRD approximation

is almost entirely within the 95%

confidence interval of the

sampling-based results.

 Surface response, error model

in progress (though control variate done)

4. What is a good basis in PRD?

PRD, selection of better basis
 We inherited the use of Hermite multivariate polynomials as basis from a related method: Stochastic

Finite Elements expansion.

 While performance of PRD so far is acceptable, Hermite basis may not be a good choice for constructing
a regression matrix with derivative information; it causes poor condition number of linear equations (of
the Fischer matrix).

 Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability
measure ρ; Gaussian measure is the specific choice):

 We formulate new orthogonality conditions:

and ask the question: how does a good basis with respect to this inner product looks like?

 Surprise: We cannot construct tensor product bases of arbitrary order. We give very tight sufficient
conditions and use them.

 Observation: This is a general principle, so it may make sense to do implement it in a crosscut fashion.

∫
Ω

=ΨΨ jhhj dAAAA δρ)()()(

∫ ∑
Ω

= =

 Ψ∂
⋅

Ψ∂
+ΨΨ ih

m
i

i

h

i

j
hj dAAAA

AA δρ
αα

)()()(
)()(1

PRD, selection of better basis
 Model I, Matlab prototype code.

We compare the setup of PRD
method using Hermite polynomial
basis and the improved basis. We
observe the improvement in the
distribution of singular values of the
collocation matrix.

 We compare numerical
conditioning for Hermite, Legendre
polynomials, and the basis based
on new orthogonality conditions.

 We have 10^10 improvement in the
condition number of the Fischer
matrix *!!! In principle this results
in much more robustness of the
matrix.

 This will offer us substantial
flexibility in creating the PRD
model.

PRD, adaptive (stepwise fitting) basis truncation
 We use a stepwise fitting procedure (based on F-test):

1. Create the PRD model as an expansion in the starting set of polynomials

2. Add one (estimated as most likely) polynomial to the set. An expansion term currently not in the model is
added if, out of all candidates, it has the largest likelihood that it would have non-negligible coefficient if
added to model.

3. Remove one (estimated as least likely) polynomial from the set. An expansion term in the model is
removed if it has the highest likelihood to have negligible coefficient.

 It is possible to truncate the model starting with a full basis set (of fixed maximal polynomial order) or
from an empty basis set (all polynomials of fixed maximal order are candidates to be added).

(Hermite basis error on 20 samples) (Orthogonal basis error on 20 samples, log_10 plot)

 Orthogonal basis created starting “with nothing” in the expansion results in precision of up to 0.01
degree K (compare with errors of >10 K by linear model).

5. Gaussian Processes for Quantifying
Uncertainty Propagation Error.

PRD: need for enhancement, need for error model

 PRD approach has been shown to be a powerful tool, (precision of <0.1% ? For a nonlinear 12-
dimensional model? Based on a training set of size 10?)

 But it does not address the bias introduced and the clearly when you fit a model PRD, which one knows is
not exactly correct. Also, the correlation model is clearly incorrect.

 We thus need to do uncertainty quantification on the uncertainty propagation process.

 We start from good surrogate model –as we demonstrated -- which we enhance with a Gaussian Process
model and fit it with max likelihood. If the covariance is smooth enough, I have a consistent model for
function and gradient error.

 Then, we use the posterior prediction (kriging) at the test points

Gaussian-processes based error modeling, preview
 Notation: GP – Gaussian Processes; GEK – gradient-enhanced Kriging

 In the framework of GP we assume that the response of the system can be represented as a Gaussian
process with explicit mean function and specified covariance function governed by a set of parameters
(hyperparameters). But Ordinary kriging by itself is not immune to curse of dimensionality !

 We use an explicit mean model (universal kriging), which, if it is a good approximation, drastically reduces
exposure to the curse. Finding values of hyperparameters leads to explicit covariance function (an
algebraic form has to be assumed).

 Covariance matrix on the training set now also includes covariances between points in the uncertainty
space, between points and gradients of the output function, and between gradients and gradients.

Gaussian Processes approach, technical details:
 We assume that the response of the system can be represented as a Gaussian process with explicit mean

function and specified covariance function governed by a set of parameters (hyperparameters):

 Covariance matrix with derivative information is given by a block form:

 Regression parameters are computed as

or , with

 The mean and variance of the model are now predicted as

 We now need to assume a functional form of the covariance function. Many options are available.
According to Kriging approach, covariance is a function of distance between two points.

 For example: squared exponential form:

 Other forms: cubic splines, Matern functions, etc

ℑ̂(x) = N(R(x)a,K(x, x;θ))

∇∇∇
∇

==
],cov[],cov[

],cov[],cov[
],cov[

JJJJ
JJJJ

YYK

YKKa TT 11)(−− ΨΨΨ=
() YKHHKHa TT ⋅⋅= −−− 111

Ψ∇
Ψ

=H

∇

=
J

J
Y

() axRYKWYYJ ji)(),cov(][1
:,:, +⋅= −µ

() () TTji
ji xRHKHxR

W
YY

KWYYSSJ)()(
),cov(

),cov(),cov(]var[
11:,:,1

:,:,
−−− +

⋅⋅−=

2

exp);,cov(

 −
−=

ij

ji
ji

SS
SS

θ
θ

Gaussian Processes approach, technical details:
 With the functional form of covariance specified, the hyperparameters are determined by maximizing

the marginal likelihood function for the data. The logarithm of the likelihood is given by:

 The optimization is carried out using standard tools (L-BFGS + active set algorithm).

 Computationally expensive parts of GP process: inverse of the covariance matrix, optimization problem,
and very high resolution sampling. No part of the GP process scales at high resolution in current
implementations, due to reliance on explicit, dense Cholesky.

 Both can be accelerated in future work:

 Cholesky of covariance matrix, matrix- calculation of Q^0.5*N(0,I) (Chen, Anitescu, Saad) – not
really attacked before.

 Better optimization solver?

 But in current setup, expensive pat is still sampling the code.

)2log(
2

log
2
1)(

2
1

2
1);(log(1111 πθ mKKYHHKHHKYYKYSJp TTTT −−+−= −−−−

θ

Gaussian Processes approach, tests on subject model
 We test the approach on training data obtained by running Model I: nuclear reactor core prototype.

 The training set is < 10 samples. Verification set is 500 samples.

 Comparison of error for GEK and PRD models:

 Fraction of actual validation set outputs that fall within 1,2,3 standard deviations

of the mean according to GP prediction:

 Correlation between actual error and predicted error:

Mean GEK error Mean PRD error Maximal GECK error Maximal PRD error

0.1154 0.47118 0.70207 2.194

+/- 1 st. deviation +/- 2 st. deviations +/- 3 st. deviations

Predicted on data
set: 69.0% 88.2% 95.0%

Mean error
correlation

Maximal error
correlation

Fraction of error
covered

Predicted on data
set: 0.965 0.913 95.0%

Gaussian Processes approach, test on subject model
 Point-wise error prediction:

GP-PRD regression based on 8 training points.

 Point-wise error prediction: GP-PRD regression

based on 6 training points.

Gaussian Processes, preliminary conclusions:
 Gradient-enhanced Kriging provides accurate representations of learned function outputs space, with

limited number of function samples (6,8 !!).

 So, if done correctly, maybe it can work when I will be able to sample a code that needs 3 months to
complete a sample run.

 The conditional variance of GEK model provides reasonable confidence bounds on prediction. (Note:
error prediction always positively correlated with actual error in the domain).

 As with PRD, the gradient information greatly reduces the number of samples and computational effort
needed for the same accuracy level.

 Future work includes: propagation and approximation of adjoint derivative information in high-
resolution, high-efficiency calculations (including multiprocessor architectures) within industrial
complexity nuclear engineering codes.

Conclusions
 PRD is a first step to a larger effort in learning the behavior of complex models by extracting more

information from fewer sample runs.

 PRD outperforms classical methods of uncertainty quantification.

 An important part of PRD is Automatic Differentiation; it can be applied to codes of *industrial*
complexity.

 We have shown that basis choice makes a difference.

 Preliminary results: Gaussian Processes and Model Reduction in PRD help with reducing uncertainty and
number of samples needed for assessment.

 Future (dependent on resources):

 Advance PRD/GP and PRD/MR to a technology.

 Extend AD to all of SASSYS and beyond.

 How do we apply it to large, time-dependent codes (since reverse mode is memory intensive)?

	Slide Number 1
	(Some ?) Components of the Uncertainty Quantification.
	Challenge 2: Faster Uncertainty Propagation by Using Derivative Information?
	Outline
	 1. Polynomial regression with derivative PRD information: Uncertainty propagation using sensitivity information.
	Why a hybrid sensitivity – sampling method for UQ?
	Uncertainty quantification, subject models
	Representing Uncertainty
	Polynomial Regression with Derivatives, PRD
	Polynomial Regression with Derivatives, PRD
	Cost versus benefit of using gradient information.
	 2. Obtaining derivative information: Automatic Differentiation of Codes with Substantial Legacy components. �
	PRD, computation of derivatives
	Why not simply discard codes with legacy components?
	Automatic Differentiation, AD
	AD tools, Fortran
	AD tools, Capabilities
	Applying AD to code with major legacy components
	Validation of AD derivative calculation
	 3. PRD-based uncertainty propagation: Numerical examples. �
	PRD UQ, tests on subject models 1.
	PRD, basis truncation
	Uncertainty quantification, tests on subject models
	 4. What is a good basis in PRD?�
	PRD, selection of better basis
	PRD, selection of better basis
	PRD, adaptive (stepwise fitting) basis truncation
	 5. Gaussian Processes for Quantifying Uncertainty Propagation Error.
	PRD: need for enhancement, need for error model
	Gaussian-processes based error modeling, preview
	Gaussian Processes approach, technical details:
	Gaussian Processes approach, technical details:
	Gaussian Processes approach, tests on subject model
	Gaussian Processes approach, test on subject model
	Gaussian Processes, preliminary conclusions:
	Conclusions

