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  Extraction takes place at liquid-liquid interface 

  Liquid-liquid extraction devices 
•  Pulsed column, centrifugal contactor, mixer settlers 
•  Mixing of immiscible phases (organic/aqueous) 
•  Generate large interfacial area 

  Multiple droplets interaction with mass transfer 
•  Interface dynamics: break-up, coalescence 
• Surfactant and Marangoni effects 

Understanding droplet dynamics is central to liquid-
liquid extraction  
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Multi-Scale Fluid Dynamics Simulation in Contactor 

At the droplet scale:  
- Direct numerical simulation of 
fluid dynamics with chemical 
species diffusion-reaction and 
interface tracking method 
- Requires high-resolution, 
about 20 grid points per droplet 
diameter, even more points for 
high Schmidt number 

At the device scale: 
- Reactive multiphase flow 
simulation  
- Averaged formulation 
(Eulerian-Eulerian approach) 
with sub-grid scale models such 
as interfacial areas and 
interphase mass transfer 

Flow regime 
information 

Closure models 
(drag, mass transfer coefficients) 
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Path Towards High-Fidelity Simulation of Droplet 
Dynamics for Liquid-Liquid Extraction Processes  
  Goal:  Develop computational capabilities to model and simulate 

with high-fidelity droplet dynamics with chemical diffusion-
reaction including soluto-capillary effect in order to develop 
subscale model for drag and mass transfer 

  Requires  
• Development of mathematical formulation 
•  Implementation of accurate numerical methods 
• Verification and validation   

  FY10 focus has been on the modeling of  
• Discontinuity in species concentration at the interface  
• Soluto-capillary effect 
• Multiple species 
• Simple chemical reaction 
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Problem Formulation  
  Assumptions of current work 

•  Two immiscible Newtonian fluids 
•  Incompressible flow 
•  Isothermal 

  Governing equations 
•  Flow equations (mass and momentum conservation equations) 

•  Species transport equation 
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Interfacial Boundary Conditions 

  At a fluid-fluid interface with no phase change 

  Continuity Condition 

  Normal Stress Balance 

  Tangential Stress Balance 

σ  surface tension coefficient, κ  curvature 

Fluid 2  

Fluid 1 

interface 

Surface tension 
coefficient varies 
with species 
concentration 
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Global embedded interface formulation to model 
discontinuity in species concentration at interface 
  Reformulate the problem as an equivalent problem 

  Advantage:  
•  Global model with embedded interface condition treatment 
•  No need to locally modify diffusion flux at the interface (as done in 

previous work in literature) 
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Numerical methods for the fluid flow 
  Incompressible flow solver 

•  Pressure correction projection method   
•  Requires solving a Poisson equation with variable coefficient (density) 
•  Finite-volume discretization 

  Interface tracking by volume tracking (Rider and Kothe 1998) 
•  Interface represented by amount of material fluids present in cell (volume fraction) 
•  Interface is evolved by solving advection equation for volume fraction 
•  Interface is reconstructed by piecewise linear planes to estimate accurate fluxes 

(avoid numerical diffusion) 
•  Momentum fluxes consistent with geometrical mass fluxes enable us to do large 

density ratio 

  Balanced-force algorithm for surface tension (Francois et al. 2006) 
•  Balanced-force treatment of normal and tangential surface tension terms  
•  Surface force method: continuum (CSF) and sharp (GFM) approach 
•  Estimation of interface curvature: convolution and height function methods 
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Numerical methods for species transport 
  Operator split in time: advection & diffusion 

•  Flow volume tracker computes species advection 
•  Advected species appear as given sources in the diffusion system 

  Spatial discretization for the diffusion system 
•  Mimetic finite-difference method based on discrete analog of integral identity (Morel 

et al. 2001)  
•  Accurate for unstructured meshes 
•  Cell-averaged concentrations and net fluxes through faces 
•  Locally conservative; more accurate diffusive fluxes 

  Time discretization for the diffusion system 
•  Fully-coupled, 1st and 2nd-order implicit time stepping (BDF1 and BDF2) 
•  Nonlinear solver uses the nonlinear-Krylov accelerated inexact Newton method 

(Carlson and Miller 1998) 
•  Decoupled, physics-based preconditioning using AMG (LLNL’s Hypre package) 
•  Error-based adaptive time step selection for BDF2 stepping. 
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Verification of Global Embedded Interface Model 
1D Diffusion with Species Discontinuity at the Interface 

m=5 and D2/D1=1 

m=0.5 and D2/D1=10 
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Simulation of Rising Droplet by Buoyancy 
Capability demonstration 

  2D and 3D single droplet rising by buoyancy 

  Single species diffusion and advection 

  Soluto-capillary effect and simple reaction  

  Reference velocity 

  Non-dimensional parameters 
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Weber number 

Peclet number 
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3D Simulation - Effect of distribution coefficient 
Constant surface tension coefficient 
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m=1 

m=5 

Re=8, We=0.22 and Pe=1600  
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➡  Drag information 
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3D Droplet Rising by Buoyancy  
Soluto-capillary effect affects droplet velocity 
Distribution coefficient affects mass transfer coefficient 
  Droplet velocity and concentration   Mass transfer coefficient 
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Soluto-Capillary Effect 
Droplet initially in a gradient 
field (2D simulation) 

  Species concentration 
gradient affects the fluid 
dynamics (two-way 
coupling) 

  Different droplet shapes 
and velocity compared to 
case with constant surface 
tension  
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2D Simulation of a Simple Reaction X+Y Z 
Capability Demonstration 
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Multiple Droplet Dynamics – Preliminary Simulation 
Re=100, We=0.036, Pe=100 
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Conclusions 
  We have developed our computational capabilities towards high-

fidelity simulation of droplet dynamics with mass transfer 

  Our capability can model the discontinuity of species 
concentration at the interface and soluto-capillary effect 

  Distribution coefficient affects the mass transfer coefficient. 
Larger distribution coefficient larger mass transfer coefficient. 

  Soluto-capillary phenomenon affects the droplet dynamics 
(shape and velocity). Positive gradient less deformation and 
faster rise.   

  We have also extended our capability to consider multiple 
species and simple reaction.  
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Challenging Issues and Future Work 
  Challenging numerical issues 
• High Schmidt number requires a much finer mesh for accurate 

solution of the mass diffusion 
• Numerical stability of surface tension algorithm 

  In the future, we plan to  
•  perform validation with INL experiments  
•  perform large scale simulation of multiple droplets  
•  develop up-scaling theory to integrate the droplet level simulation to 

the device scale multiphase CFD simulation 
• model surfactant  
•  study break-up and coalescence 
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