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Understanding droplet dynamics is central to liquid-
liquid extraction

m Extraction takes place at liquid-liquid interface organic phase §

/

= Liquid-liquid extraction devices
e Pulsed column, centrifugal contactor, mixer settlers
e Mixing of immiscible phases (organic/aqueous)
e Generate large interfacial area

= Multiple droplets interaction with mass transfer

 Interface dynamics: break-up, coalescence
e Surfactant and Marangoni effects

|
Centrifugal contactor

Mixed fluids

/&.oale by ntrifugal for

Mixced fluids zone
" break- up due to shear flow
(Taylor-Couette flow instability))
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Multi-Scale Fluid Dynamics Simulation in Contactor

Flow regime

information

4

Closure models
(drag, mass transfer coeﬁicienti‘

At the droplet scale:
- Direct numerical simulation of
fluid dynamics with chemical
species diffusion-reaction and
interface tracking method
- Requires high-resolution,
about 20 grid points per droplet
diameter, even more points for
high Schmidt number

- Los Alamos

NATIONAL LABORATORY

At the device scale:

- Reactive multiphase flow
simulation

- Averaged formulation
(Eulerian-Eulerian approach)
with sub-grid scale models such
as interfacial areas and
interphase mass transfer
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Path Towards High-Fidelity Simulation of Droplet
Dynamics for Liquid-Liquid Extraction Processes

= Goal: Develop computational capabilities to model and simulate
with high-fidelity droplet dynamics with chemical diffusion-
reaction including soluto-capillary effect in order to develop
subscale model for drag and mass transfer

= Requires
e Development of mathematical formulation
e Implementation of accurate numerical methods
 Verification and validation

= FY10 focus has been on the modeling of
e Discontinuity in species concentration at the interface
o Soluto-capillary effect
e Multiple species

ﬁ) o Slmg)le chemical reaction
» Los Alamo

NATIONAL LABORATORY 4

E
Operated by Los Alamos National Security, LLC for NNSA / VA I =%
/| VA',Q""Q




Problem Formulation

m  Assumptions of current work
e Two immiscible Newtonian fluids
e Incompressible flow
e |sothermal

=  Governing equations
* Flow equations (mass and momentum conservation equations)

9P v (i )=0
ot Surface tension

opu . . ~ ~ -
GL +V- (puu) =-VP+pg+V- (M(Vu + VTu)) @n + V00
!
e Species transport equation
==V (Cii)+ ¥ (D(VC))+ Y,
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Interfacial Boundary Conditions

At a fluid-fluid interface with no phase change .
= Continuity Condition  V, =u, =u, " ; Fluid 1
=  Normal Stress Balance
ou, u
P,-P = O’K+2M2nk( p ) —2M1”k( p k) Eluid 2
nj, n interface
= Tangential Stress Balance
00 ~odu, . du, ~du, . du, )
=W Lt — | W ——+n Surface tension
0s on Js |, " on s/, g :
coefficient varies
o surface tension coefficient, k curvature with SpeC|e.S
concentration
aC a0C C At thermodynamic
D A _p A2 A2 _ y
A Ton " om c.. " equilibrium O=0,+ y(Ci = Cref)
)
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Global embedded interface formulation to model
discontinuity in species concentration at interface

= Reformulate the problem as an equivalent problem

dayy = I, xinR
%+ V-(atpu) = V'(CZD(VI/})) a(x 1) ={m, ijz R
Co=ay|,, i=12 >0

= Advantage:
e Global model with embedded interface condition treatment

 No need to locally modify diffusion flux at the interface (as done in
previous work in literature)
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Numerical methods for the fluid flow

= Incompressible flow solver
e Pressure correction projection method
e Requires solving a Poisson equation with variable coefficient (density)
e Finite-volume discretization

= Interface tracking by volume tracking (Rider and Kothe 1998)

» Interface represented by amount of material fluids present in cell (volume fraction)

* Interface is evolved by solving advection equation for volume fraction

e Interface is reconstructed by piecewise linear planes to estimate accurate fluxes
(avoid numerical diffusion)

Momentum fluxes consistent with geometrical mass fluxes enable us to do large
density ratio

= Balanced-force algorithm for surface tension (Francois et al. 2006)

e Balanced-force treatment of normal and tangential surface tension terms
e Surface force method: continuum (CSF) and sharp (GFM) approach
e Estimation of interface curvature: convolution and height function methods

A
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Numerical methods for species transport

= Operator split in time: advection & diffusion
 Flow volume tracker computes species advection
e Advected species appear as given sources in the diffusion system

= Spatial discretization for the diffusion system

e Mimetic finite-difference method based on discrete analog of integral identity (Morel
et al. 2001)

e Accurate for unstructured meshes
e Cell-averaged concentrations and net fluxes through faces
e Locally conservative; more accurate diffusive fluxes

= Time discretization for the diffusion system
» Fully-coupled, 1st and 2"d-order implicit time stepping (BDF1 and BDF2)

* Nonlinear solver uses the nonlinear-Krylov accelerated inexact Newton method
(Carlson and Miller 1998)

e Decoupled, physics-based preconditioning using AMG (LLNL’s Hypre package)

ﬁ-) e Error-based adaptive time step selection for BDF2 stepping.
» Los Alamos
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Verification of Global Embedded Interface Model
1D Diffusion with Species Discontinuity at the Interface

. lnterfa Ce 2 ! — Analytical solution
Region 2 | Region 1 O o atcoll caner
-w I + w 08" interface at cell edge
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Simulation of Rising Droplet by Buoyancy

Capability demonstration

1.5
= 2D and 3D single droplet rising by buoyancy

= Single species diffusion and advection
= Soluto-capillary effect and simple reaction
= Reference velocity U =./gd 0.5

= Non-dimensional parameters

> 0
Ud
Re, = pud — pe P24 Reynolds number
W s
-0.5
2
d 2
e, =PV, PV Weper number
(o) O
21
d
Pe, = vd Pe, = vd Peclet number
Dl D2
| 1995 0 0.5
> Los Alamos t=0.000000  cycle=0
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3D Simulation - Effect of distribution coefficient
Constant surface tension coefficient

Droplet Velocity vs. Time
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3D Droplet Rising by Buoyancy
Soluto-capillary effect affects droplet velocity
Distribution coefficient affects mass transfer coefficient

m Droplet velocity and concentration = Mass transfer coefficient

V=2Vy'f1 5=2C'f1 k(t)=A‘:dAt (C”%:C”) V, drop volume

24 24 A, interface area

Droplet Velocity vs. Time Mass Transfer Coefficient vs. Time
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Soluto-Capillary Effect

o=constant=0.001 v=-0.001<0 v=0.001>0

Droplet initially in a gradient "
field (2D simulation) m=1 1 1 1
m Species concentration =0.5

gradient affects the fluid o | .

dynamics (two-way i |

coupling)

m Different droplet shapes
and velocity compared to
case with constant surface _,,
tension
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Droplet Velocity vs. Time
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2D Simulation of a Simple Reaction X+Y—> Z
Capability Demonstration
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Multiple Droplet Dynamics — Preliminary Simulation
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Conclusions

= We have developed our computational capabilities towards high-
fidelity simulation of droplet dynamics with mass transfer

= Our capability can model the discontinuity of species
concentration at the interface and soluto-capillary effect

= Distribution coefficient affects the mass transfer coefficient.
Larger distribution coefficient larger mass transfer coefficient.

= Soluto-capillary phenomenon affects the droplet dynamics
(shape and velocity). Positive gradient less deformation and
faster rise.

= We have also extended our capability to consider multiple
species and simple reaction.
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Challenging Issues and Future Work

= Challenging numerical issues

e High Schmidt number requires a much finer mesh for accurate
solution of the mass diffusion

* Numerical stability of surface tension algorithm

= In the future, we plan to
e perform validation with INL experiments
e perform large scale simulation of multiple droplets

e develop up-scaling theory to integrate the droplet level simulation to
the device scale multiphase CFD simulation

* model surfactant
e study break-up and coalescence
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