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Model for Used Fuel Dissolution

2010 Tasks
= |Literature review on the dissolution of oxide and mixed oxide fuels

= Use commercial code to develop preliminary model for the dissolution of oxide and mixed
oxide fuels

Topics
= Thermodynamics
= Kinetics Model

= Preliminary Results
= Future Development




Modeling Methodology-Thermodynamics

Thermodynamic database

= (Calculations implemented using the code “The Geochemist’s Workbench®”,
Professional Release 8.0 (GWB)

— The GWB uses a Gibb’s free energy minimization technique to determine the
equilibrium state of the system of interest.

— Thermodynamic/kinetic database used for modeling with GWB was a version of the
database, “thermo.com.V8.R6.full” (Wolery and Daveler, 1992)

e Thermodynamic data for key species were added to the database from a number of sources

Activity Coefficients

= Activities of electrolyte species are calculated using two different methods
— Extended form of the Debye-Huckel Equation (“B-dot” Equation)
— Harvie-Mgller-Weare implementation of the “Pitzer Equations”.

e The Debye-Huckel activity model was generally used to generate activity diagrams and for
kinetic calculations due to the lack of data needed to use the “Pitzer Equations”



Modeling Methodology-Redox Chemistry

Redox speciation
= Redox speciation (E; - pH or Pourbaix) diagrams identify the key chemical characteristics of
the systems of interest,.

— E, is the oxidation/reduction potential (in volts) of an aqueous solution relative to the standard
hydrogen electrode:
e For the half reaction: aA + bB+ ne =cC+dD
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Basis of Model for Spent Fuel Dissolution
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Empirical rate constants for Th,_ U, O, in dilute nitric acid

(from G. Heisbourg et al., J. of Nuclear Materials, 335, 5-13)

Model Basis
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dC, change in concentration of ion (i)
dt Wwithtime
SA Surface area per volume of solution
'y incontact with solid
V. Stoichiometric factor (moles (i) in
' solid)
K. Rate constant

(aj) Activity of species that promote or
inhibit dissolution

Pj Power of species (j) in the rate law

2 Reaction quotient / equilibrium
constant (saturation state)



Initial Results for UO, at Different Nitric Acidities

= |nitial results for the dissolution of pure urania show impact of acid concentration
and initial surface area
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Effect of H* Activity Order on Dissolution Time

Initial results examining the kinetics of the dissolution of pure urania demonstrate
a strong effect with selection of H* activity order
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Effect of U/Th Composition on Dissolution Time

= |nitial application of the rate equation the dissolution rate of uranium oxide and
thoria-urania mixed oxides in nitric acid were calculated

— Results are preliminary as not all of the parameter values have been established: notably
the values for the activities, (aj), of species that promote or inhibit dissolution.
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Model for spent fuel dissolution-HF Complexation

= The model accounts for complexation and the precipitation of secondary phases.

— Examples for a run in which a urania-thoria phase was dissolved in nitric acid in the
presence of 0.5M HF.

= The model can be used to predict HF concentrations that will enhance thoria
dissolution kinetics without precipitating thorium fluoride.
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Future Work on Spent Fuel Dissolution Modeling

Refine model by incorporating additional chemical phenomena (e.g., precipitation,
redox kinetics, solid/solution interface)

Extend the model to account for other fuels of interest.

— Refine model to simulate the dissolution of urania-plutonia and lanthanide bearing
uranium oxide spent fuel

— Refine model to account the influence of fission and activation products

Develop a mechanistic understanding for reduction in dissolution rates for uranium
oxide solid solutions and annealed uranium oxide fuels
— Incorporate mechanisms into dissolution model

e Removal of non-U cations

e Semi-conducting properties of solid solutions may affect the rate of electron transfer and
oxidation

e Preferential dissolution preferentially along crystal defects
Develop interface between spent fuel dissolution model and process/plant-scale
IPSC models
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Non-equilibrium model of U-TRU Co-deposition

FY10 Tasks

= Develop non-equilibrium model for U-TRU co-deposition at solid cathode incorporating mass
transfer effects, and validate experimentally

Topics
= Co-deposition model overview
= Experimental validation

= Further development



U-TRU Co-deposition Model

Model deposition of metals at cathodes as a function of applied voltage

— Spreadsheet-based model with links to thermodynamic data package

— Deposition is tracked by changes in current with applied voltage
e Metal is deposited at solid cathode as a solid solution

e Co-deposition occurs when current density exceeds the limiting current density for uranium
electrodeposition
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Calculated Current vs. Potential Plot
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Electrochemical Cell
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Experimental Validation of Non-Equilibrium Model of U-TRU
Co-Deposition

= U-TRU co-deposition at a solid cathode
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Understanding the Morphology of the Deposit by Understanding
Nucleation Phenomena

= Growth of the co-deposit occurs as a competitive
process between growth at nucleation sites and creation
of new nucleation sites.

= These competitive processes are affected by
concentration of depositing species, cathode potential,
and current density.

— Large crystals form when electrodeposition is dominated by
growth on a limited number of nucleation sites

— Small crystals form when electrodeposition is dominated by
continuous formation of new nucleation sites.

= Develop a model that predicts both composition and
morphology (crystal size) of the electrode co-deposit as
a function of composition and deposition conditions.




FY-11 Tasks

= Develop a refined electrodeposition nucleation model
— Predicts composition of deposit

— Includes nucleation behavior as a function of composition of the
electrodeposit and electrodeposition conditions.

= Develop an initial model of electrorefiner operations that can be
integrated into the NEAMS IPSC framework

— Includes anodic dissolution, as well as cathodic behavior



Intermediate-term Pyrochemical Separations Modeling

Electrochemical Cells

— Initial framework for integrated electrochemical cell simulation capturing salient cell phenomena for electrorefining and
electroreduction processes
e Map current distribution in cell
¢ |dentify concentration of ionic species in electrolyte, at anode and at cathode
e Elucidate process reaction kinetics

Thermodynamic Properties
— Initial model development describing thermodynamic activity of relevant species based on measured or predicted data
— Build corresponding thermochemistry database to support model development

Transport Properties
— Review and evaluate existing correlation models for relevant transport properties
— Develop initial model from review to predict transport parameters

Reaction Mechanisms
— Evaluate and adapt existing electron transfer reaction mechanisms for electrorefining process
— Develop initial framework for electron transfer reaction mechanisms occurring in electroreduction
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