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NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of
studies in the field of microscopic nuclear data. The primary ob-
jective is the dissemination of information in the comprehensive form
required for nuclear technology applications. This Series is devoted
to: a) measured microscopic nuclear parameters, b) experimental tech-
niques and facilities employed in measurements, c) the analysis, cor-
relation and interpretation of nuclear data, and d) the evaluation of
nuclear data. Contributions to this Series are reviewed to assure
technical competence and, unless otherwise stated, the contents can be
formally referenced. This Series does not supplant formal journal
publication but it does provide the more extensive information required
for technological applications (e.g., tabulated numerical data) in a
timely manner.
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SCATTERING OF MeV NEUTRONS FROM ELEMENTAL IRON*

by
A. Smith and P. Guenther

Argonne National Laboratory
Argonne, Illinois

ABSTRACT

Neutron elastic- and inelastic-scattering cross sections
of elemental iron are measured from 1.5 to 4.0 MeV with
incident-neutron resolutions of ~50 keV and at incident-
neutron energy intervals of 50 keV, Cross sections for
the excitation of observed levels at 0,853, 1.389, 2.097,
2,579, 2.677, 2.974 and 3.152 MeV are determined. The ob-
served elastic- and inelastic-scattering angular distributions
fluctuate strongly with incident energy. The experimental
results are averaged over broad energy intervals and inter-
preted in terms of spherical optical-statistical and coupled-
channels models including consideration of direct-vibrational
excitations. The importance of a comprehensive data base in
such energy-averaged interpretations and of the direct-
vibrational excitations is stressed. The present measured and
calculated results, combined with those reported in the
literature, are used to formulate an evaluted scattered-
neutron data file in the ENDF format extending from 1.0 to
4,0 Mev,

*This work supported by the U.S. Department of Energy.



I, INTRODUCTION

The scattering of few MeV neutrons from elemental iron (%92% S6Fe
and 6% °“Fe) is governed by direct- and compound-nucleus processes
including the excitation of one and two phonon vibrational levels., The
physical interpretation of the observed phenomena is complicated by
pronounced fluctuating structure in both elastic- and inelastic-scattering
channels. The available experimental data generally is of insufficient
scope to reasonable define an energy-averaged behavior consistent with the
underlying postulates of the optical-statistical (0S) or coupled-channels
(CC) models. It was an objective of the present work to provide a suffi-
ciently detailed experimental data base to reliably define the energy-
averaged behavior of neutron scattering from elemental iron and to use this
energy—-averaged behavior to examine the interplay between compound-nucleus
and direct-reaction neutron scattering mechanisms particularly including
the excitation of low~lying vibrational levels. Another objective was
the provision of experimental-neutron-scattering data for applied needs
(e.g. fission-reactor systems) over an engrgy region extending from that
of detailed resonance formulations (e.g. V1.0 MeV) to that of the
Statistical continuum (e.g. A5 MeV), Section II of this paper briefly
outlines the experimental method. The experimental results are described
in Sec. III and discussed in terms of spherical (0S) and vibrational (CC)
models in Sec. IV. Section V outlines an evaluated scattered-neutron
data file for iron over the region 1.0 to 4.0 MeV, derived from the
present measured and calculated results and those previously reported in
the literature.

II. EXPERIMENTAL METHODS

All of the present measurements employed the pulsed-beam fast-neutron
time-of-flight technique and the associated apparatus at the Argonne Fast
Neutron Generator. The details of the particular applications of the
method and the apparatus have been extensively described elsewhere.l?2%3
Therefore, the present remarks are limited to a brief outline of the experi-
mental method.

The 7Li(E,n)7Be reaction was used as a neutron source for all of the
measurements. The lithium-target thicknesses were adjusted to provide
incident-neutron energy spreads at the Scattering samples of 35 to 40 keV.
The energy scale was determined by control of the proton beam and conserva-
tively known to 10 keV; i.e. to a value less thag the incident-neutron energy
spread. The source was pulsed for durations of ~1 nsec at a repetition rate
of 2 Mhz.

The scattering samples were right cylinders of high-purity natural
iron 2 cm in diameter and 2 cm long. The atomic density was obtained using
conventional weight and dimensional measurement techniques. The samples
were placed v13 cm from the source at a zero-degree source-reaction angle.
The neutrons were incident upon the lateral surface of the cylinders.
Similar samples of polyethylene (CHp) and natural carbon were used for
calibration and verification purposes.



Measurements were concurrently made with ten proton-recoil scintillation
detectors placed at flight paths of 5 to 5.5 m measured from the scattering
sample. The flight paths were defined by a massive-collimator system and
distributed over a scattered-neutron angular range of 20 to 160 deg. The
The velocity resolution of the detection system was sufficient to resolve
all prominent sgattered-neutron groups resulting from reported levels to
excitations of ~3.0 MeV, The relative scattering angles were optically
determined to within * 0.5 deg. and the absolute normalization of the
relative angular system was determined to be *1 deg. by observation of
the energy loss of neutrons scattered from hydrogen both left and right
of the zero reaction angle. Angular distributions were determined with
either a single setting of the collimator system (10 angles) or redundant
settings (20 or more angles).

The relative energy dependences of the detector sensitivities were
determined either by observation of neutrons emitted at the spontaneous
fission of 252Cf or of neutrons scattered from hydrogen at a number of
angles with a fixed incident-neutron energy. Generally, results obtained
with the two methods were consistent. The relative detector responses
were normalized to the wellknown H(njn) cross sections by the observation
of neutrons scattered from hydrogen at selected incident energies and
scattering angles.5 Thus all the iron neutron scattering cross sections
were determined relative to the H(n;n) cross sections.

Data acquisition was carried out using a digital computer system which
concurrently recorded 512 time intervals and 16 energy-response intervals
for each of 11 time-of-flight detectors (10 scattered-neutron and 1 monitor
detector). Subsequent data reduction procedures included corrections for
angular resolution, sample attenuation and multiple-event effects.3

Measurements were made at various periods over a xS vear interval with
independent detector calibrations and with detailed variations of the
measurement system. The measurement schedules included both random and
systematic selection of incident-neutron energies.

ITI. EXPERIMENTAL RESULTS

A, Neutron Elastic Scattering

A characteristic of the observed differential neutron elastic scattering
was a strong fluctuation with incident neutron energy. Even results obtained
as the same incident neutron energy varied due to differences in incident
resolutions and small variations in energy scale. Thus comparisons of
the measured distributions or with the predictions of theory were meaningful
only in a relatively broad energy-average. The magnitude of the fluctuations
i§ illustrated by the present neutron-elastic~scattering results shown in
Fig. 1. Even with the relativély broad experimental resolutions employed
in the present experiments, differential cross sections at some angles can
vary by a factor of as much as two in 50 to 100 keV.
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In view of the above fluctuations and the objective of determining
energy-averaged behavior, the differential elastic-scattering distributiong
were averaged over incident-neutron energy intervals of ~200 keV. Each
averaging interval contained at least five measured distributions. The
resulting energy-averaged distributions behaved in a relatively energy-
smooth manner as illustrated in Fig. 2. The experimental uncertainties
in these gnergy-averaged differential cross-section values were 3-5%.

O0f this, V1% was due to counting statistics., Uncertalnty contributions

due to the standard-reference H(n;n) cross sections were small (~1%).
Corrections for multiple events, angular resolution and beam attenuation
effects contributed V37 to the overall uncertainty. These correction-—
assoclated uncertainties could be systematic as detailed resonance~structure
effects could not be treated in the correction procedures. Uncertainties
due to detector normalizations were generally 3%.

The energy-averaged angle-integrated neutron elastic scattering cross
sections were deduced by least-square fitting the corresponding differential
distributions with the Legendre polynomial expansion

6

do _ o '
® - In 1+ Z wiPi . (1)
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There were no constraints on the fitting procedure. The resulting angle-
integrated elastic-scattering-cross-section values are shown in Fig. 3.
Their uncertainties were estimated to be 3-5%. The angle-integrated cross
section values generally follow a relatively smooth energy dependence but
a broad structure persists even in this 200 keV average. The angle-
integrated elastic-scattering cross sections, together with the total cross
section, imply a non-elastic cross section. Harvey et al.® have reported
high resolution neutron total cross sections over a wide energy range,
Smith and Whalen’ have shown that an energy-average of the results of

Ref. 6 are consistent with the results of broad resolution total cross
section measurements to within ~1%. Thus a 200 keV average of the results
of Harvey et al. was accepted for the derivation of the non-elastic cross
Sections. The average of the total cross-section results of Ref. 6

and the present energy-averaged elastic-scattering results were subtracted
to obtain the non-elastic cross sections shown in Fig, 3. The derivation
Was extended below 1.5 MeV using an average of previously reported results
from this Laboratory.® Fluctuations in the non-elastic cross section are,
In part, artifacts of the procedures used to construct average total and
elastic-scattering cross sections but the general trend of the non-elastic
Cross section is defined to within 5-10%. Over the energy range of the
?resent work the non-elastic cross section is comparable with the neutron
lnelastic-scattering cross section. A 200 keV average of the neutron
inelastic-scattering cross sections given in ENDF/B-IV® is compared with
the deduced non-elastic cross section in Fig. 3. The averaged ENDF/B~-IV
inelastic cross section ig in good agreement with the present non-elastic
result uwp to energies of ~2,0 MeV. Above 2.0 MeV the present non-elastic
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Fig,

Comparison of Neutron Cross Sections of Elemental Iron Averaged Over Energy Intervals of 200 keV.

The present angle-integrated elastic scattering results are indicated by solid data points, those

of Ref. 8 by crosses. The curves denote; A = an equivalent 200 keV average of the total-cross-

section results of Ref. 6, B = "eye-guide" constructed through the present experimental values,
C = an equivalent average of the elastic-scattering results of Ref. 21, D = the non-elastic cross
section as defined in the text, and E = the equivalent average of the neutron inelastic-scattering

cross sections as given in ENDF/B-IV.3
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results are systematically larger than the averaged ENDF/B-1V inelastic
values by amounts generally in the range 10-20% (i.e. by factors of 2-4
times the uncertainty in the non-elastic cross section). These non-elastic
and inelastic comparisons imply an increase in the iron inelastic scattering
cross section above 2.0 MeV, relative to the values of ENDF/B-IV, by
appreciable amounts. Such an increase is further supported by the
measurements of individual-inelastic-excitation functions as discussed
below.

A number of previous measurements of neutron elastic scattering from
iron have been reported in the literature (e.g. see Refs. 10-20). These
Previous results generally pertain to energy-isolated measurements made
with various energy resolutions and scales, As a consequence, data com-
parisons are sensitive to fluctuating structure and agreement (or lack
thereof) between various measured results is of uncertain significance.
The large variations observed in such isolated comparisons are illustrated
in Fig. 4. Perey et al.?! have measured elas&ic scattering from iron
with very good resolution up to energies of 2.5 MeV., 200 keV averages
of their results were compared with the present measurements. The averaged
differential distributions are in qualitative agreement but there are
quantitative and systematic differences at some scattering angles
(notably between 90-120 deg.). Associated quantitative discrepancies
appear in comparisons of angle-integrated cross section values, as
illustrated in Fig. 3, with the average values of Ref. 21 tending to
be 5-10% lower in magnitude than those derived from the present work.

Thus the results of Ref. 21 imply even larger inelastic scattering cross
sections than do the results of the present work.

B. Neutron Inelastic Scattering

Neutron groups corresponding to the seven excitation energies 853 * 15,
1389 + 30, 2097 + 22, 2579 + 35, 2677 + 14, 2974 + 11 and 3152 *+ 21 keV were
observed. These excitation energies were determined from the measured
Scattered-neutron flight times, flight paths and incident-neutron energies.
The individual results were averaged to obtain the above mean values with
the uncertainties defined as the RMS deviation from the mean of the individual
measured values. The observed excitations were generally consistent with
reported structure in °“Fe and 56Fe as shown in Table 1.22 The measured
differential neutron-inelastic-scattering cross sections fluctuated with
incident energy in a manner similar to that of the elastic-scattering cross
sections discussed above. Therefore the measured values were averaged
over energy increments to obtain the energy-averaged behavior., The averaging
increments ranged from 200 keV where the data spanned wide energy ranges
(e.g. for the 853 keV state) to 100 keV where the data were of limited
energy extent (e.g. for the 3152 keV state). The averaged differential
inelastic-scattering cross sections were generally symmetric about 90 deg.
excepting those pertaining to the excitation of the 853 keV state, Angle-
integrated inelastic scattering cross sections were derived from the averaged
differential values using the Legendre fitting procedure described above
in the context of elastic scattering. The estimated uncertainties
associated with the measured differential inelastic cross sections varied
from 5 to 25% depending upon the particular incident energy and excited
st~*e. The uncertainties associated with the angle-integrated values were



Fig. 4. Comparison of Measured Differential Elastic Scattering Cross Sections.
Present results are indicated by solid data points and curves, Pre-
viously reported results are indicated by various symbols as defined
in the reference list. , Energies are numerically noted in the MeV,
Crogs sections are given in b/sr and scattering angle (8) in 1ab deg.
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TABLE 1. Observed Inelastic~Neutron Excitations in Elemental Iron

——

No. Ex (MeV) dEx MeV) EX (MeV)a Isotopic Identification®
1 .853 .050 0.847 Fe-56 (2+)
2 1.389 .030 1.407 Fe-54 (2+)
3 2,097 .022 2,085 Fe-56 (4+)
4 2,579 .035 2.539 Fe-54 (4+)

2.564 Fe-54 (04)
5 2,677 .014 2.658 Fe-56 (2+)
6 2.974 .011 2.940 Fe-56 (0+)
2.960 Fe-56 (24)
2,948 Fe-54 (6+)
2.981 Fe-54 (2+)
7 3.152 021 3.120 Fe-56
3.123 Fe-56
3.163 Fe-54

aTaken for Ref. 22.



of similar magnitude. Generally, the cross sections relevant to the
lower-energy and prominent excited states (e.g. the 853 keV state) were
known to better accuracy.

The observed 853 keV "state" was attributed to the reported 847(2+) keV
level in 3fFe, The excitation of this state is a dominant feature of in-
elastic neutron scattering from iron at the energies of the present experiments.
The measured differential cross sections for the excitation of this state,
averaged over 200 keV increments, are shown in Fig, 5. As the incident
energy increases from n1.7 MeV to 4.0 MeV the distributions change from a
general symmetry about 90 deg. to a pronounced forward peaking indicative
of a direct-reaction component. The angle-integrated cross sections for
the excitation of this state are compared with previously reported measured
and evaluated results in Fig. 6. Representative previous measured results
are given in Refs. 23 to 32. Most previous measurements were made at
isolated incident energies with various resolutions, thus comparisons are
seriously perturbed by the large fluctuations. However, the present
cross gections tend to be larger than some previously reported values
above V2.0 MeV. This could be expected as most previous measurements were
at few or single scattering angles often larger than 90 deg. and thus
gid not include the forward-peaked portion of the distributions. Below
2.0 MeV the present results are in good agreement with comparable averages
constructed from the results of Ref. 8 and from the ENDF/B-IV evaluation.®
The latter appears to be essentially the good-resolution results of Perey
et al.2! in this energy range. In addition, there is good agreement
with the recent broad-resolution (n;n',y) results of D, Smith,33 Generally,
the present results indicate an increase in the cross sections for the
gxcitation of the 847 keV level relative to those given ENDF/B~IV above
v2.0 Mev,

The observed 1389 keV "state" was attributed to the reported 1407 (2+)
level in °%Fe. The corresponding angle-integrated cross sections were
relatively small as shown in Fig. 6. Above %3.0 MeV the present measurement
had to be corrected for a perturbation due to inelastic scattering
(EX = 853 keV) of the second and minority neutron component from the source
reaction with the consequence of increased cross-section uncertainties.
Dispite this measurement problem and the small magnitudes of the cross
sections the present results are in good agreement with previously reported
measured values and with the evaluation of ENDF/B-1IV,°

The observed 2097 keV "state" was attributed to the reported 2085 (4+)
level in °%Fe. The present angle-integrated cross sections are in good
. agreement with a number of previous experimental results and with the
evaluation of ENDF/B-IV as illustrated in Fig, 6.

The excitation of a "state" at 2579 keV was observed. It probably
consisted of two unresolved components due to the excitation of the
reported 2539 and 2564 keV levels in °“Fe. 1In addition, inelastically
scattered neutrons (EX = 2085 keV) from the second neutron group of the
Source reaction made a major contribution to the observed neutron group.
That contribution was so large that corrections could not be reliably
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made and thus cross sections were only qualitatively estimated, They
were relatively very small (of the order of 10 mb/sr). Previously
reported measurements made with isotopic samples30 indicate that the
cross sections for these two states in °“*Fe are small (several tens
of mb).

The observed excitation of a "state" at 2677 keV was attributed to
the reported 2658(2+) keV level in °6Fe. The corresponding angle-
integrated cross sections are generally somewhat larger than Previously
reported measured and evaluated quantities as shown in Fig. 6. Thig
difference may not be real as the present results covered a rather
limjted energy range and therefore the averaging increment was confined
to v100 keV. As a consequence the energy-averaged results shown ip
Fig. 6 appear to retain some energy-dependent fluctuations,

The observed 2975 keV "state" was attributed to a composite of
contributions from reported 2940(0+) S®Fe, 2948(6+) Shpe, 2960(2+) S6pq
and 2981(2+) °“Fe keV levels. The corresponding cross sections are fairly
consistent with previously reported measured results, as illustrated ip
Fig. 6. Moreover, the averaging increment was only ~100 keV and, again,
residual fluctuations may remain a distorting factor.

The observed 3152 keV "state" was attributed to reported 3120 and
3123 levels in 5%Fe and the 3163 state in 5“Fe. The present cross-section
results are considerably larger than some previously measured values., It
is not clear that the various experimental results correspond to a
composite of the same three components thus the comparisons of Fig, 6 may
not be valid in all cases.

The above inelastic scattering components very largely determine
the inelastic scattering cross section of elemental iron to incident-
neutron energies of 3,5 MeV., Their sum should be consistent with the
non-elastic cross section derived in Sec. III-B, above. "Eye~-guideg"
were constructed through the measured values as indicated by the curves
of Fig. 6. Their sum agreed to within ~5% with the deduced non-elastic
cross section shown in'Fig. 3., This consistency again suggests that the
iron inelastic scatterin% cross sections as given in ENDF/B-IV are too
small at energies above 2.0 MeV.

IV. INTERPRETATION

The applicability of optical-statistical-model concepts to the present
experimental results was examined.3“?35 The application was complicated by
the large fluctuations in the measured values, even in the 200 keV
averages as illustrated in Figs. 2 and 3. Wider averages are difficult
to obtain due to the onset of new inelastic-scattering channels every feyw
hundred keV. Given these problems the model considerations were largely
subjective. '



The model derivation was essentially based upon the measured neutron
differential-elaStic—scattering cross sections, averaged over 200 keV,
as illustrated in Fig. 2. An optical potential was derived from each
measured distribution using six-parameter Xi-square fitting procedures
(varying real and imaginary strengths, radii and diffusenesses). It was
assumed that the element consisted entirely of 56Fe, Compound-nucleus
contributions were calculated using the procedure of Hofmann et al,36
and the excited levels of 56pe given in Table 1. Higher-energy excitations
(above 3.2 MeV) were treated as a continuum distribution using the parameters
of Gilbert and Cameron.3? The parameters resulting from these fitting
procedures varied widely with energy, reflecting the fluctuations
in the measured values. However, a general trend of real-potential
parameters emerged and these were fixed for the second fitting procedure
which was confined to the two imaginary-potential parameters, strength and
diffuseness. The imaginary radius was made equivalent to the real radius.
The results of this second fitting procedure better defined the imaginary
potential. Finally, some further subjective adjustments were made to
improve the description of the neutron total cross section. The resulting
parameters are summarized in Table 2. Qualitatively, they are similar to
some parameter sets reported in the 1iturature.3® However, it should be
made very clear that these parameters describe an energy-average behavior
and may not, in the present fluctuating context, describe each experimental
result.

The overall agreement of measured and calculated neutron elastic-
scattering cross sections is reasonably good as illustrated in Fig., 7.
The regions where the two types of results tend to be most divergent are
generally correlated with prominent structures in total and elastic-
scattering cross sections as illustrated in Fig. 3 (e.g. near 2.5 MeV).
Explicit comparions of measured and calculated differential cross sections
at 500 keV intervals are shown in Fig. 8. These comparisons were arbitrarily
selected and illustrate both good and poor agreement. Yet more than 80% of
the measured values agree with the calculated results to within the experimental
uncertainty alone. Again some of the poorest agreement is in the 2,5 MeV
region of large fluctuation.

The calculated neutron-total cross sections and a 200 keV average
of the measured results of Ref. 6 are in reasonable agreement as illustrated
in Fig. 9. This comparison illustrates the unusual phenomenological
feature of the potential, an energy dependent diffuseness of the imaginary
term. This behavior was suggested by the fitting of elastic-scattering
distributions and refined so as to reproduce the experimentally indicated
total-cross-section minimum near 1.0 MeV. This pragmatic approach provides
a reasonable solution to a long-standing problem in this mass-energy region.
The physical implicationms, if any, are not clear.

The calculated inelastic neutron excitation cross sections are compared
"itg the present experimental values in Fig. 9. The calculations were confined
to 56Fe and corrected for the isotopic content of the elemental target. The
Salculated excitations of the prominent 847 keV (2+) level are generally
~15% smaller than the measured values. In regions of large fluctuations
the discrepancy can be larger. Measured and calculated cross sections
for the excitation of the 2085 keV (4+) level generally agree to within
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TABLE 2. Optical-Model Parameters
Real Strengtha V =52 -0,3-E(MeV), MeV
Real Radius 1.236, F
Real Diffuseness 0.493, F
Imaginary Strengthb W= 10.2 -0,2+-E(MeV), MeV
Imaginary Radius 1.236, F
Real Diffuseness® 0.605, F
Spin-orbit Strengthd 8 MeV

a
Saxon form,

b . .
Saxon-derivative form.

“Value constant from 2.8 to 4.0 MeV and decreasing from 0.605 F at
2.8 MeV to 0.25 F at 1.0 MeV in linear manner.

dThomas form,
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Fig. 8.

Comparisons of Illustrative Measured and Calculated Differential
Scattering Cross Sections of Elemental Iron. Incident neutron
energies are noted in MeV. The present experimental results are
indicated by data symbols where circular points denote elastic
scattering and square points the excitation of the 847 keV level.
Simple curves denote the results of spherical calculations and
those with "tick" marks results of coupled-channels calculations
as described in the text. The dimensionality is identical to
that of Fig. 1. (Figure on following page.)
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of Elemental Iron. The present measured values are indicated
by circular data points and those of Ref, § by crosses, A
200 keV average of the neutron total crosg sections of.Ref 6
is indicated by curve "A". Solid curves without notation )
indicate the results of spherical calculations ang the "B"
curve the results cI coupled-channels calculations as de-
scribed in the text. The dotted curves are the "eye-guides"
of Fig. 6. Excitation energies taken from Ref. 22 ang

Table 1 are numericzily given in keV,



<10%. The measured cross sections for the excitation of the 2658 keV (2+)
level appear to fluctuate by rather large amounts but are Systematically
higher than the calculated values. The calculated excitations of the

contributions from 5"Fe not considered in the calculations, The calculated
and measured excitations of the composite 3125 keV level are not in very
good agreement. This is not surprising as the underlying J-m values are

not well known (3+ and 2+ were used in the present calculations) and there
are several S%Fe contributions that were not considered in the calculations,

Given the underlying problem of large fluctuations making the average
behavior difficult to determine, uncertainties in some J-m values and
cumulative contributions from S%Fe the agreement between measured and
calculated neutron excitiation cross sections was judged acceptable. The
largest-magnitude discrepancies are associated with the first (2+) level. .
Here the calculations are particularly sensitive to the details of the
compound-nucleus calculations. The present work employs the formalism
of Hofmann et al,36 Relatively small variationms within this framework
(e.g. variations in the degree of freedom used in estimating level-
spacing distributions) can significantly effect the calculated compound-
nucleus result., At higher energies the present calculations employed the
continium distributions of Gilbert gnd Cameron37 to estimate competition
from channels above those of the present measurements. This approximation
may not be entirely appropriate at the relatively low-energies of the
Present experiments.

56Fe was assumed to be a vibrational nucleus with the first level
(847 kev(2+)) a one-phonon vibrational excitation., This is consistent with
the observed tendancy of scattered neutrons resulting from the excitation of
this level to be somewhat preferentially distributed toward forward scattering
angles (see Fig. 5). The magnitudes of such direct-vibrational excitations were
assessed using the potential of Table 2 in a coupled-channels calculation.
The deformation was taken from the tabulation of Stelson and Grodzins; 39
i.e. B, = 0,25, Using this simple approach, the calculated contributions
of direct-vibrational excitations to the cross sections for the excitation of
the 847 keV level were small, as shown in Fig. 9, but they did improve the
agreement with the measured values. The direct-vibrational component also
produced a forward-angle bias to the differential-inelastic—scattering cross
sections which was in better agreement with experimental data as illustrated
in Fig. 8. The vibrational coupling of ground and first-excited levels also
significantly altered the calculated elastic-scattering distributions as
shown in Fig. 8, Subsequent potential-parameter selection within the context
of the vibrational model was not pursued as the fluctuations probably remain
the dominent sources of uncertainty. However, the results of Ref., 40 suggest
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V. EVALUATED SCATTERING CROSS SECTIONS

The objective of the present evaluation was the provision of evaluated-
neutron-scattering cross sections of elemental iron in the limited energy
scope of 1.0 to 4.0 MeV. An intermediate energy resolution of 200 keV
was selected as most appropriate in this transitional-energy region between
well resolved resonance structure and a smooth energy-dependence of the
cross sections, This evaluation and all comparisons with other results
are in the context of this 200 keV resolution function. The present
evalution should be reasonably descriptive of broad intermediate-
resonance structure and relatively free of undue perturbations from
single or a few large resonances. It is hoped that the present evalution
will find use either as a subset of more comprehensive evaluation efforts
or in the verification of evalutions undertaken under other auspices. The
numerical values of the present evalution are given in the ENDF/B
format in the Appendix.?

A, Evaluated Neutron-Elastic~Scattering Cross Sections

At energies above 1.5 MeV the evaluated elastic scattering cross
Sections were taken from the present measured values following the
"eye-guide" of Fig. 3. Below 1.5 MeV the evaluation follows the same
"eye-guide" which is based upon the measured values of Ref. 8 and a
fluctuating shape consistent with the neutron-total cross sections of
Ref. 6 and the elastic scattering cross sections of Ref. 21. The uncer-
tainties associated with the present evaluated results are believed to be
less than 5% above 1.5 MeV and possibly somewhat larger at the lower
energies, below those of the present measurements.

The evaluated relative neutron-differential-elastic-scattering
distributions at energies above 1.5 MeV were taken directly from the
pPresent measurements (see Fig. 2). At energies of less than 1.5 MeV,

200 keV averages were constructed from the measured values of Ref, 21.

The evaluated results were not directly dependent upon the absolute
normalizations of the two measured data sets involved. Generally, other
Previously reported measured differential Scattering results were obtained
at isolated energies and subject to local fluctuations. Thus they were
not quanitatively considered in the evaluation.

The final evaluated neutron-differential-elastic~scattering cross
sections are summarized in Fig. 10,

B. Evaluated Neutron-Inelastic-Scattering Cross Sections

The present inelastic-scattering evaluation considers levels up to
excitations of 3.2 MeV as generally defined in Table 1. The evaluation
directly follows the "eye-guides" of Fig. 6. That figure relates the
evaluation to the present measurements and the body of previously reported
experimental information.
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The excitation of the 847 keV (56Fe, 2+) state below 1.6 MeV follows the
systematic and broad-resolution (n3n',y) results of Smith.33 The latter have
been shown to be consistent with both the present direct neutron measure-
ments and the high-resolution results of Perey et al.2! in the region
of energy overlap. Above 1.6 MeV the evaluation follows the present
measurements which are consistent with a number of previously reported
energy-isolated results; e.g. Cranberg and Levin,23 Hopkins and Silbert,2
Lindlow,25and Tsukada et al.2® 1In the context of the broad 200_keV
resolution, the present evaluation is believed known to within ~5Z.

The excitation of the 1.408 MeV level was attributed entirely to
the 2+ state in S“Fe. The present measured values give good definition
between 2.4 and 4.0 MeV and are extended to threshold using the results
of Smith.33 The present evaluation is consistent with a number of pre-
viously reported measured values and with calculational estimates based
upon the potential of Table 2. The uncertainties associated with the
evaluation are ~10% to 20%. These relatively large uncertainties are
of little concern in most applications as the cross-section magnitudes
are small,

The evaluation for the 2.085 MeV (58Fe,4+) follows the present measure-
ments and extends to threshold via the results of Gilboy and Towle2” and
of Tucker et al.?8 The general data base is very consistent and thus the
evaluation is believed known to better than 10% throughout the region of
appreciable cross sections.

The evaluation includes the excitation of a level at 2,539 (two
components from SkFe) for completeness. The present measurements give
a qualitative indication of the cross section magnitudes that is consistent
with the isotopic results of Lindlow.2® and with calculational estimates.
Therefore, the calculations were used for the evaluation. The associated
uncertainties maybe relatively large but the cross section magnitudes
are very small and thus will have little effect in most applicationms.

The evaluation for the excitation of the 2.658 MeV (56Fe,2+) level
is based upon a relative calculated energy-dependent shape normalized to
the present experimental values. The evaluation reasonably extrapolates
to the higher-energy experimental results of Lindlow.2® and of Kinney
and Perey.2® However, below 4.0 MeV the evaluation is somewhat larger
than some previously reported values. This may be the result of the
limited energy range of the present measurements which made it difficult
to accurately determine the energy-averaged magnitudes. Despite these
problems, the evaluation uncertainties were estimated to be ~15%.

The evaluations for the excitation of 2.940 and 3.120 MeV levels
were obtained by normalizing calculated excitation functions to the few
measured values of the present work. The calculations envolved only S6re
and both observed levels certainly contain S4Fe components. Moreover,
both levels consist of at least two °°Fe components and the J-m values
envolved in the 3.125 MeV ''level" are not certain. All of these factors
contribute to evaluation uncertainties which are estimated to be 10 to 20%.
These are probably very conservative estimates as the present evaluation



is in very good agreement with previously reported measured Cross sections
for the excitation of the 2.940 MeV level and reasonably consistent with
those reported by Lindlow.25 and by Kinney and Perey?® for the excitation
of the 3.125 level.

The above individual components of the evaluation were summed
to obtain the total neutron-inelastic-scattering cross sections shown in
Fig. 11. The result is in very good agreement with the non-elastic-
scattering cross sections derived above. Several non-scattering channelsg
are open in this energy range but the corresponding cross sections are
too small to significantly influence these comparisons. The estimated
uncertainty in the derived total—neutron—inelastic—scattering cross section
was estimated to be 5% to V3.3 MeV, Above 3.3 MeV additional scattering
channels are open that were not observed in the present experiments.
Fig. 11 suggests that the cumulative sum of their cross sections is
n2004275 mb at 4.0 MeV., That appears to be a reasonable value in view of
the results of higher-energy measurements by Kinney and Perey. 29

As noted above, the observed angular distributions of neutrons
resulting from the inelastic excitation of the above states were essentially
isotropic. An exception is the excitation of the 847 keV state. Therefore,
the evaluation uses the measured neutron angular distributions of Fig. 5
for the 847 keV state and accepts isotropy for all other inelastic-neutron
angular distributions.

Between approximately 2,1 and 3.5 MeV the present evaluated inelastic
neutron scattering cross sections are 10 to 20% larger than the corresponding
quantities given in ENDF/B-IV. The major contribution to this increase is
the excitation of the 847 keV level. Changes of this magnitude are not
insignificant in the context of fast fission reactors. For example, they
reflect ~0,15% variations in the k of a representative LMFBR system and

R ; glflf. . 41
the effect can rapidly increase wi iron content (e.g. in FTF systems),

VI. SUMMARY REMARKS

Differential neutron-scattering cross sections of elemental iron were
measured in sufficient detail to well define the differential broad-
resolution elastic and inelastic scattering cross sections from 1.5 to
4.0 MeV. The results portray intermediate-resonance structure having
periodicities and widths of several hundred keV. The elastic—scattering
cross sections, determined to accuracies of ~5%, together with reported
neutron-total cross sections imply a non-elastic cross section to
accuracies of ~5%. This non-elastic cross section is consistent with the
results of concurrently measured neutron-inelastic-excitation cross
sections. Both the implied non-~elastic cross sections and the directly
measured inelastic Scattering cross sections are significantly larger in
magnitude than comparable values given in ENDF/B-IV over wide energy regions,
The consequence is a significant impact upon the results of LMFBR neutronic
calculations, Optical-statistical model calculations led to results
generally consistent with the measured values. However, strong fluctuations
in this mass-energy region make explicit model fits to individual measured

25
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Summary of Evaluated Neutron Inelastic Excitation Cross
Sections of Elemental Iron. Simple curves indicate the
individual components as defined in Table 1 and the
Appendix. Curve "B" indicates the non-elastic cross
section as derived from the present measurements and the
neutron total cross sections of Ref. 6. Curve "A" is the
sum of the individual inelastic excitation cross sections.
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distributions of little, if any, significance. Only comparisons in a wide
energy average are meaningful., Despite their scope and detail, it was

not clear that the present measurements provided a good definition of

the energy-average behavior requisite to energy-averaged model interpretations.
The model interpretations are further complicated by direct-vibrational
Interactions. Such processes are suggested by the anisotropy of some of

the measured differential inelastically-scattered neutron distributions and
significantly influence the interpretation of the neutron elastic scattering
processes. "
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