NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-62

Covariance Matrices and Applications to the Field of Nuclear Data

by
Donald L. Smith
November 1981

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.



NUCLEAR DATA AND MEASUREMENTS

SERIES

ANL/NDM-62

COVARIANCE MATRICES AND APPLICATIONS
TO THE FIELD OF NUCLEAR DATA*

by

Donald L. Smith
November 1981

Uof C-AUA-USDOE

40

d0/dQ, b/sr
°

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.



The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy,
Argonne Universities Association and The University of Chicago, the University employs the
staff and operates the Laboratory in accordance with policies and programs formulated, ap-
proved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona The University of Kansas The Ohio State University
Carnegie-Mellon University Kansas State University Ohio University

Case Western Reserve University Loyola University of Chicago The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati The University of Michigan Saint Louis University

Illinois Institute of Technology Michigan State University Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Washington University

The University of Iowa Northwe stern University Wayne State University

Iowa State University University of Notre Dame The University of Wisconsin-Madison

NOTICE

This report was Prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Department of Energy, nor any of their
‘employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied,
Or assumes any legal liability or responsibility for the ac-
curacy, completeness or usefulness of any information, ap-
Paratus, product or process disclosed, or represents that its
use would not infringe Privately-owned rights. Mention of
commercial products, their manufacturers, or their suppli-
ers inthis publication does notimply or connote approvalor
disapproval of the product by Argonne Nationa] Laboratory
or the U. S. Department of Energy.




ANL/NDM-62 )

COVARIANCE MATRICES AND APPLICATIONS
TO THE FIELD OF NUCLEAR DATA*

by

Donald L. Smith
November 1981

*rhis work supported by the U.S. Department of Energy.

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
UsA



NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies
in the field of microscopic nuclear data. The primary objective is the
dissemination of information in the comprehensive form required for nuclear
technology applications. This Series ig devoted to: a) measured microscopic
nuclear parameters, b) experimental techniques and facilities employed in
measurements, c) the analysis, correlation and interpretation of nuclear
data, and d) the evaluation of nuclear data. Contributions to this Series
are reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication but it does provide the more extensive informa-
tion required for technological applications (e.g., tabulated numerical data)
in a timely manner.
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PREFACE

Physicists like to think of themselves as totally rational people, but
apparently they are just as prone to fads and fashion in their work as are
other mortals. The topic of covariance matrices has emerged as a lively con-
temporary issue in the field of nuclear data. Furthermore, it 1s an issue
which has evoked strong and seemingly unreconcilable partisan sentiments
within this community of researchers.

No one denies that there is a need for improvements in standards for
reporting experimental data and their uncertainties, and in the methods used
for evaluating nuclear data for applications. The controversy centers mainly
around the matter of whether subjective interpretation and judgment should
continue to play an important role in data analyses, or whether they should
be entirely replaced by scientifically rigorous procedures. Proponents of
the scientifically rigorous approach claim, with justification, that sub jec—-
tive methods introduce biases which are nearly impossible to trace. Further-
more, they believe that science is not an art and that scientists should
adhere to rigorous methods, without resorting to expediency, otherwise their
activities will cease to be science. Those who believe that educated intui-
tion and judgment can never be entirely replaced argue convincingly that the
requisite input for rigorous analyses is often not available, or is dubious
in quality. They claim that there has always been a place, or even a require-
ment, for the exercise of good judgment in science. Superimposed upon this
controversy is the fact that strict adherence to idealistic standards for
reporting data and uncertainties would involve the expenditure of more time,
and the management of significantly greater quantities of information, than
the levels which are already straining our existing data manipulation insti-
tutions. The community must decide whether the need for detailed uncertainty
information is sufficiently great to justify the additional effort and costs
involved, and then chart an appropriate course for future endeavors.

This report has not been prepared primarily to support a particular
partisan position in this issue. During a sabbatical leave (September 1980
to August 1981) at the Central Bureau for Nuclear Measurements, Geel, Belgium,
I was challenged by Horst Liskien to develop a rigorous procedure for deriving
uncertainties in calculated spectrum—averaged activation cross sections. I
glanced through the recent literature and found some papers which indicated
the appropriate direction to follow, although they did not impress me as
being entirely satisfactory tutorial documents for someone who wants to learn
a working knowledge of covariance error analysis and evaluation techniques
with minimal expenditure of time. I knew that there would be many books and
older documents available on this subject, but I did not have time to seek,
sort through and study all of this material. Pragmatic considerations led
me to be concerned more with the mechanics of error analysis and less with
the mathematical foundations of this field. Essentially, I acquired the in-
formation I needed to know to get started from a few papers and then worked
out my own procedures during the course of solving specific problems at
hand. The notes which I prepared for my own benefit were ultimately col-
lected into a handout distributed preceding a lecture on covariances which
I presented at Geel in June 1981. Sections II through X of this report are
extracted from these lecture notes. Section XI is based on later work.

~vii-



No one who has written lately about the topic of covariances in nuclear
data applications can make much claim to originality. Although the concepts
and formulas are known to have appeared in many places and forms over a time
span of nearly two centuries, I believe that there is a need to restate some
of these old concepts in the framework of specific contemporary nuclear data
applications. This reports reflects one such endeavor.

It is possible to approach this subject in many ways. My objective has
been to produce a self-teaching guide to the topic so that a serious reader
could learn the mechanics of covariance analysis by studying this report.

1 have avoided discussing statistical matters to any great extent, so the
student will have to seek elucidation on this matter elsewhere. Normal
(Gaussian) statistical laws are commonly assumed in Physics applications.
Normal distribution laws apply to large samplings and random variables.
There are no doubt many situations where the assumption of Normal statistics
is a poor approximation. The validity of most of the error propagation
formulas is not dependent upon the choice of statistics, but one must insure
that the errors assumed for the parameters within a given problem all cor-
respond to the same confidence level. Some understanding of the statistical
nature of the parameters is thus required implicitly if one hopes to properly
interpret the errors derived from propagation calculations.

What I will present here is my understanding of covariance analysis. 1
have selected my own notation and examples. I would like to have given even
more examples than you will find in this report, but realistic examples which
do not lead to extensive numerical work are not easy to conjure. Therefore,
in some instances, I have illustrated the principles with symbolic examples;
i.e., the required procedures are indicated, but numerical values are not
inserted. The level of mathematical sophistication in this treatment is at
the undergraduate level. An understanding of coordinate systems, functions,
differential calculus and the basic concepts of matrix algebra are all that
is needed. I will try to indicate the steps involved fairly completely and
will not leave too many details for the reader to £111 in.

Hopefully, the content of this report, and other recent contributions,
will help nuclear data researchers to address the problem of improving
the accuracy of their endeavors in ways which are both practical and sci-
entifically acceptable.

-viii-



COVARIANCE MATRICES AND APPLICATIONS
TO THE FIELD OF NUCLEAR DATA*

by

Donald L. Smith
Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
UsA

ABSTRACT

A student's introduction to covariance error analysis and
least~squares evaluation of data is provided. It is shown that
the basic formulas used in error pPropagation can be derived
from a consideration of the geometry of curvilinear coordinates.
Procedures for deriving covariances for scaler and vector func-
tions of several variables are presented. Proper methods for
reporting experimental errors and for deriving covariance
matrices from these errors are indicated. The generalized least-
squares method for evaluating experimental data is described.
Finally, the use of least-squares techniques in data fitting
applications is discussed. Specific examples of the various
procedures are presented to clarify the concepts,

*
This work supported by the U.S. Department of Energy.
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1. INTRODUCTION

The analysis of experimental nuclear data and the evaluation of the data
base for applications are matters which have been receiving attention lately.
The large expense involved in performing new experiments, the need for re-
searchers to operate with restricted funding, and increasingly stringent data
accuracy requirements have forced nuclear data researchers to examine closely
the methods used in processing nuclear data. Important objectives are the
elimination of bias in evaluations, and realistic assessment of uncertainties
in the data base. The mathematical tools required to handle this problem have
been available since the days of K. F. Gauss (ca. 1809), but they have been
largely overlooked by the nuclear data community until recently. F. G. Perey
of Oak Ridge National Laboratory has been a leader in pointing out the value of
covariance and least—squares methods in nuclear data analyses. Although these
methods are now generally known by nuclear data evaluators, they are apparently
not well understood by many other nuclear data researchers. Evaluators are
now requesting experimenters to provide more complete information on their
experimental work, especially with regard to uncertainties and correlations.
Therefore, it behoves experimentalists to acquire a basic understanding of
covariances and least-squares methods so that an improvement in communication
between experimentalists and evaluators can be achieved. Nuclear data experi-
mentalists should not overlook an important fact of life: Experimental data
rarely flows directly from the measurers to the people who use the results for
nuclear energy applications. The results employed in applications are almost
always evaluated results.

There appears to be a need to provide experimentalists and other non-
evaluators in the nuclear data field with explicit guides to the subject.
This report is intended to be one such guide. It is not a review of the sub-
ject, and no attempt has been made to provide an exhaustive list of relevant
references. Furthermore, this report does not attempt to address all the
aspects of covariance analysis which may be relevant to nuclear data research.
The reader may wish to examine Refs. 1-6 since the present work was guided in
part by these documents. References 7 and 8 are two other documents which
were prepared with objectives similar to the present endeavor. Reference 7
is a fine explicit guide to covariance methods for the uninitiated. Ref-
erence 8 offers lucid insight into concepts of error analysis and data evalu-
ation. Reference 9 is a small monograph which is clearly written and dis-

cusses numerous related topics although it does not address the present sub-
ject directly.

This report deals with the mechanics of error propagation, data evaluation
and data fitting. The statistical aspects of error analysis will not be dis-—
cussed. However, one important statistical point has to be emphasized: The
errors assumed for all parameters considered in a particular analysis must con-—
form to the same equivalent confidence level. For example, one cannot properly
interpret the result of an error propagation calculation if the errors for some
of the parameters are one standard deviation (lg) and those for others are two
standard deviations (2¢g). Estimation of the confidence levels for errors in
:iﬁdzm variables which obey Normal statistics is straightforward. For variables
morz d:?ey other statistical laws, or have systematic errors, the problem is
th ficult. The practitioner must simply do the best he can to insure that

e errors for all the considered parameters are "equivalent” in this respect.



aspect has not Previously received the emphasis it really deserves. Section III
shows how to derive the error for a scalar function of several variables and
Section IV extends the formalism to a vector function. Section V considers an
application of the formalism in Section IV to a problem of special importance

in the field of nuclear data. Section VI offers Some comments on the preceding
material, and it provides a natural stopping point for the reader who is inter-
ested in error Propagation methods but not in evaluations. The basic method

of least-squares evaluation ig discussed in Section VII, with emphasis on the
algebraic aspects of the theory. Section VIII provides the user with an explic-
it application of the methods discussed in Section VII. Techniques for dealing
with non-linear evaluation problems are discussed in Section IX. Section X
explains how an evaluator can update an evaluation to include new data sets
without completely redoing the evaluation. Thig is an important feature of the
least-squares method. Section XI is very important because it explains by means
of eéxamples how the concepts of Section VII and IX can be used by experimenters

in everyday data analysis activities. Finally, Section XII offers some general
comments on the subject material.
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II. CURVILINEAR COORDINATES AND METRIC COEFFICIENTS -
ORIGIN OF THE FORMALISM

Y3 A _53

Consider, for example, a region
R of three—-dimensional space. Often
we describe points P in this region
by giving their Cartesion coordinates
(yl,yz,y3) relative to some origin O.

2 Region R

But, we could define many other
more complicated coordinate systems,
say one where point P is given by

(xl,xz,x3).

Consider such an alternate coordinate system which is linked to our
Cartesion set by the functional relations:

1 = xl(yl’y2’y3) ’ xz = xz(ylayz)Y3) ’ X3 = x3(yl’y2’y3) b (1)

These relations must be single-valued and continuously differentiable over the
region R, and it must be possible to obtain the inverse relations over the same
region:

vy = Y (pRgeXy) a ¥y = p(kgxg) s Yy T yalepEyxg) 2)

The relations of Eq. (1) define a transformation from Cartesian coordinates to
general curvilinear coordinates, while Eq. (2) provides the inverse transforma-
tion.

Consider a curve C through region R. Let dL be a very small element of
arc along the curve at point P. Let % be the vector from origin O to point P.
We are permitted for a Cartesian coordinate system to write down the following
expressions directly:

> ~ ~ A

r =iy, +iy,+ 1,99 (3)

dr = i,dy, + 1,dy, + Ly, (4)
+> > 3

(dL)2 = dr e dr = D (dyi)z , (5)



where 1 s i and 1, are unit vectors along the ¥, ¥y, and y, axes of Ehe
Cartesion coordinate system and dr is the small %ncregental change in r cor-
responding to changes dyl, dy. and dy,. The vector dr is tangent to the

curve C and (dL)? jig the square of it3 length. Note that "e" implies a vector
dot product.

coordinates defined by xl, X, and Xg Then

> a7 ar or
dr = o dxp + e 4%y + o 4%, (6)
1 2 3
where
o 2im  AY
3;2.= x> 0 Z;;’ (x; for j # 1 held fixed). (7)

For simplicity, define the base vectors ;i

<>

P
31=$<1=1,2,3> , (8)
i
then
+ + > >
dr = a; dxl + a, dx2 + ay dx3 . (%)

Vector equations apply regardless of the choice of coordinate system, so Eq. (5)
can be express in curvilinear coordinatesg by

(dL)2 = 4f e 4f = SN N ®a)dx d (10)
redr= XY G 8y)dx; dx,
1=1 j=1
Let Gij be defined as
> >
Gy =a, o &, (11)
then
3 3
2 .
(@2 = 3° Sy dxy dx, . (12)

1=13=)
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Equation (12) is an example of a quadratic differential form, and it is clearly
szgmetric since

Gy =%y - (13)

The coefficients Gi are called the metric coefficients for this particular

curvilinear coordinate system at point P. A Cartesian coordinate system is
a special case of a curvilinear coordinate system with

G (14)

15 %13

1 if i =3 s
= 1

5
13 o 1£143 .

The quantity Gij is the Kronecker Delta. The elements G1j form a matrix G where,
explicitly,

611 12 13
G =[c,; Gy Gp3| - (16)
G G G

31 32 733
L

The quadratic differential form from Eq. (12) can be expressed in matrix
notation,

()2 = (dHT o G o (D) (17)

or more explicitly (to help visualize the analysis):

- T - -1
61 S12 C13 dx;
(dL)2 = (dx;, dx,, dx,] @ |Gy, Gy, Go3|® dx, | - (18)
G G G dx
i 31 32 33 L3

Here, "¢" implies matrix multiplication and "T" designates a transposed matrix
(column and row elements interchanged).
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We can alter the representation somewhat by defining

> -~
a. = s, u
i

. (1=1,2, 3 (19)

i

- >
where u, is g unit vector parallel to the base vector a which points in the
direction corresponding to an increase in Xy Thus, Eq. (10) becomes

3 3
> > - ~
(dL)2 = 47 o dr = :z: (ui ® uj)sis. dxidx. (20)
i=13=1
Define
Cij = u, L uJ R (21)
then
3 3
2 = .
(dL) Z Z Cij sisjdxidx:j (22)
1=13=1]
If C is defined as the matrix of elementsg Cij’ then
()2 = (S e ax)" e C o (5 dx) (23)

in matrix notation.

S will be referred to as the sensitivity matrix, and Eips the correlation
matrix for thig curvilinear coordinate 8ystem. The matrix § ig a diagonal

s1 0 0
S=]|o0 s, 0 . (24)
0 0
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The metric coefficients G can be calculated readily if the inverse
transformation relations from Eq. (2) are known. We have

3 (ayk>
Z —3—{ dxi (k = 1: 2’ 3) ’ (25)
i=1

then, from a comparison of Eq. (5) and Eq. (12), one can deduce the expression

3 ayk Byk
Gij = E <"ax_i> <3x_j'> (i)j = 1) 2, 3) ’ (26)
k=1

following some routine algebra.

What has all of this to do with errors? To answer this question, let us
summarize the preceding material in words: We consider a three—-dimensional
region of space. The invariant quantity to be examined is the distance along
some curve in the space. When we look at a small local element of length near
a particular point, we find that it can be calculated in terms of small incre-
ments of the curvilinear coordinates provided that one knows the matrix of
metric coefficients, or alternatively, the sensitivity matrix and the correla-
tion matrix. The calculation is performed using the quadratic differential
form. The analogy of this formalism to the problem of error propagation should
begin to be evident. The parameters of the experiment play the role of the
curvilinear coordinates. Points along the curve correspond to various experi-
mental outcomes for various values of the parameters. The "distance” between
two nearby points, which differ only due to small positive or negative incre-
ments in the coordinates (errors in the parameters), corresponds to the uncer-—
tainty in the experimental result. This uncertainty is to be calculated using
the quadratic differential form, and one must have a knowledge of the sensitivity
of the experimental result to the experimental parameters (sensitivity matrix)
and the correlations between the parameters (correlation matrix). The applica-
tion of these basic concepts to error analysis will be pursued in the following
sections of this report.

Before going on to the next section, there are two items of unfinished
business to complete. One does not normally speak of a covariance matrix in
discussions of the metrics of curvilinear coordinates, however, we will now
define a matrix M which plays the role of the covariance matrix when this
formalism is applied to error analysis. Refer to Eq. (22), then consider
a matrix M which consists of the elements

My = Cpy dxg dxg (1,j =1, 2, 3) . (27)



Define f as follows:

1
+
I={1] . (28)
1
Then Eq. (22) can be written in the form
(2= el efie(set) . (29)

What is the meaning of the correlation matrix C? The elements Ci' satisfy the
condition J

- < < :
1S cij 1 . (30)

The diagonal elements Cii are always unity. For Cartesian coordinate systems,

the off-diagonal elements are always zero. A Cartesian coordinate system is an
orthogonal system. The variables Y1» Yy, and y3 can vary independently of one
another. Curvilinear coordigate Systems may be orthogonal, but they don't have
to be. If the base vectors a, at a particular point P are non-orthogonal, then
they are not all perpendicular. A small change in position involving a change
dxy will involve an unavoidable change in the value of another x; for which

the coefficient C is non-zero. When the formalism ig applied to error
analysis, one sees that the errors in any two parameters are correlated whenever
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III. ERROR ANALYSIS FOR A SCALAR QUANTITY

Suppose we wish to perform an experiment to determine a physical quantity
Vv which is a function of several (say n) experimental parameters X,, «.., X .
It will be assumed that the relationship between the variables x, and the
derived quantity V is smooth. Using the language of mathematics, we expect
continuity and differentiability of the function defined by

Vo= V(xy, eees X)) = V(x) . (31)

Let EV be the uncertainty (error) in V which results from the uncertainties Exl’
> >
Exn (Ex) in the parameters x. After having been exposed to the

ceey
material in the preceding section, the reader will not be surprised to
learn that

2 - (3 > ° >

Ey (S ®E) C,®(S®E) (32)
is the formula to apply in deriving the error in V, with C_ defined as the
matrix of correlations between the errors E ., ..., E_ , and

x1 Xn
(av/axl) 0]
S = . . (33)
0 (av/axn)

The matrices are of apriori size n x n, but analysis can proceed with smaller-—
size mat;ices when circumstances produce redundancy for the full n x n matrices.

The information in the error vector ﬁ; and correlation matrix Ex can be
combined into the covariance matrix ﬁ;, defined in terms of its elements by

Mxij = cxij E_y Exj (1,3 = 1,n) R (34)

E. =M )Y2 (1=1,n) . (35)

xi xii

Then the equivalent to Eq. (32) is

E2=Gel) ok o Gel) (36)

>
where I is a vector like the one defined in Eq. (28), with dimension n.
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It is often preferagle to work with E and C_ rather than with ﬁ;
because the elements of E give the explic¥t érrors in the parameters while
C_ gives an indication of*the degree of correlation between these various
eérrors - in dimensionless form. MX is harder to understand.

Consider the vector differential dG defined by

> vV +
dv = Zl (W)dxi . (37)

Then, if the symbol <...> is used to indicate an expected value,

n n
> >y av A *> > _ 2
<dV @ dv> = E Z (E) <§><dxi ® dxj> = EV ’ (38)

i=13=1
from consideration of Eq. (36), provided that

> >
Mxij = <dxi ) dxj> (39)

Equation (39) is often used as the definition of the covariance matrix. The
larger the assumed errors, the smaller the probability that one will observe
deviations which exceed these errors. For example, the probability of a devia-
tion exceeding three standard deviationsg (39) 1is only about 0.3% for Normal
Statistices.

How should one 8o about deriving the covariance matrix for an experiment?
The first step 1s to catalogue all the Ssources of error in the established
t

X
The magnitudes of the various error components should be determined and these
eérrors should be expressed in the units of the corresponding parameters.
The result of thisg exercise would be a table of the form:
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2 Error Components
i 1 2 e L cee L Total Error
ter 1 e e see e cee e E
Parame 11 12 12! 1L x)
2 e e cew e cee e E
21 22 2% 2L X2
]
i ei,1 ei,2 e ei'l' e e Exi'
n e e se e e ' s e e E
nj n2 ng nL Xxn

The quantity e 2 is the magnitude of the uncertainty in x, due to effect "4".
We assume that a total of L different such effects are considered. Clearly
some e, , may be zero. The elements of the covariance matrix M are cal-
culateé from the expression

L
Mxij = zji:l Sijg e12 ejl (i, j=1, n) . (40)

The Si . are correlation parameters relating error components for X, and xj.
They have the following properties:
5112=1 (1i=1, nand £=1, L) , (41)
-1 <s <+1 ({1 # j, and 2 =1, L) . (42)

1jg

When the errors in X, and x, due to effect "&" are totally uncorrelated, then

Sijg must be zero. When the errors in X and xg due to effect "&" are

totally correlated in the positive sense, then 14, must be + 1. Total anticor-
relation implies a value - l. Partial correlation or anti-correlation leads to
intermediate values of Si . Since the experimenter does not usually derive the

covariance matrix, he shoufd provide an error component table and enough informa-
tion about the experiment to enable someone else (e.g. an evaluator) to determine

the Sijg values and generate the covariance matrix.
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Experimenters should try as much as possible to establish the various
effects "2" to be considered so that the Sijﬁ will be either - 1 (rarely),

0, or + 1. The experimenter is on rather uncertain ground if he is in a
position of having to estimate partial correlations or anti-correlations.

Example: Error in the ratio of two cross sections

Two cross sections 01 and 02 are available and one wishes to evaluate
the error in the ratio

R = R(al, 02) =g,/ (43)

172 >

if each cross section has a 1% uncorrelated error component and a 2% fully
correlated error component. The correlation is assumed to arise because
each cross section was measured using the same standard; an alteration in
this standard would cause Os and 0, to change in the same direction. They

are thus correlated in the positive sense.

The first step toward generation of the covariance matrix for the errors
in cross sections 9 and % is to construct a table which exhibits the cor-

related, uncorrelated and total errors. This table is the basis for calcula-
tion of the covariance matrix elements:

Uncorrelated Correlated Total
Parameter Error Error Error
o 0.01 o 0.02 ¢ [€0.01 6,)2 + (0.02 o,)2]1/2
1 1 1 1 1
2 211/2
g, 0.01 g, 0.02 o, [(0.01 02) + (0.02 02) ]

Define E01 and E02 to be the total errors in 01 and 02 respectively, M
to be the covariance matrix, S to be the sensitivity matrix and E. to be the
error in the ratio R. The sensitivity matrix is given explicitly by

_ (3R/301 0 l/a2 0
S = = (4[‘)

- 2
0 (aR/acz) 0 ol/o2
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and the covariance matrix elements, according to Eq. (40), are:

M E01 (0.01 01) + (0.02 ol)

11

M, =My, = (0.02 0,) (0.02 o,) (45)

= 2 = 2 2
M Eo (0.01 02) + (0.02 02) .

22 2

The off-diagonal element M is positive and is the pxoduct of correlated errors
for the two cross sections G, and o, From Eqs. (34) and (35), it is readily
seen that the off-diagonal eiement 812 of the correlation matrix C is

The error ER in the ratio R is then calculated from
ER2 =(SeE)TeC o5 ekE) , (47)
with
Eol
>
E = . (48)
EoZ

Straightforward matrix multiplication yields the result

-G\ 2 -0
2 1\2. 2 9 2 1 1
ER = <;:> Ecl +'<3_§> E02 +2(0.8) (%_> (3_§> Ecl EoZ (49)
2 2 2/\%2
2 2 2
EY _/[E E E \/E
@) G+ ) on G
01 02 01 02
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Since (Eol/cl) =(E02/02) X 0.02236, we obtain (ER/R) % 0.01414, If the correla-

tion had been ignored by eliminating the last term from Eq. (49), then (E /R)
= 0.03162 would have been obtained. 1Ip this example, a neglect of the cor-
relation leads to the determination of too large an error for the ratio R.

For this problem, the correlation leads to a smaller error because the
ratio is ga quotient of the two C¢ross sections o, and 9, and one element of the
sensitivity matrix is negative. If the error in the product of the Cross sec-
tions had been sought, then both of the elements of the sensitivity matrix
would have been positive and the sign of the last term in Eq. (49) or Eq. (50)
would have been positive. Thig would mean that inclusion of the correlation
would increase the error.

The expression for M1 in Eq. (45) is explicitly positive since the
definition of the problem %ndicates that the correlated portions of the
errors in o, and ¢ are positively correlated (e.g., 1if one is measured too
large, then so is the other). There can be instances where two parameters
are anti-correlated (e.g., when one increases the other decreases). If this
is the case, a negative sign must be inserted in front of the corresponding
covariance matrix element, and the correlation coefficient will then be
negative as allowed by Eq. (30). So, one must be careful to distinguish the
effects due to the sign of the correlation of the Parameters and those due
to the sign of the Sensitivity matrix elements. The correlation parameters
Sijl appearing in Eq. (40) provide us with a systematic way to keep track

of these considerationg,
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IV. ERROR ANALYSIS FOR A VECTOR QUANTITY

The formalism in Sec. III 1is adequate to handle the error analysis for
a single quantity derived from several experimental parameters. However, one
often wishes to analyze the errors for several quantities derived from a set
of experimental parameters. It is desired to deduce the correlations between
the errors in the derived quantities as well as the magnitudes of thelr errors.
To do this, it is necessary to use a vector formalism.

L
Assume that m quantities Vi, «.., V (V) are to be derived from n parameters
X1y ++vs X (x). The relationships are Qefined by m continuous, differentiable
functions represented by the vector equation

J =V (x) - (51)

> > -
The errors in the parameters X are represented by the vector E_, and Cx is the
correlation matrix for these errors. Then the covariance matrix Mv for the
derived quantities is given in terms of its elements by

Mygy = (5, o EX)T °C o (5, o Ex) (1, =1,m) . (52)

- > - >
MV has size m x m since V has size m. Cx has size n x n and Ex has size n since

; has size n. All the S have size n x n, and these various sensitivity matrices
have the explicit form

(8Vi/3xl). 0 1

) (BVi/Bxk). (1 =1, m) . (53)

0|
[

L 0 ( BVi/ axn)

-

The error vector EV for 6 is derived from

By = BRI RS N (54)

and the correlation matrix E& for the errors in the derived quantities is
deduced from

Cyiy ~ MVij/(EVi EypH @, 3=1,m - (55)

Clearly, EV has size m and E& has size m x m.



-16-

Example: Errors and correlations for a cross section set

Consider two foils of different
material which are exposed to the same
neutron flux. The induced activities Fe———— Y,o
are measured with the same detector
and cross sections are calculated
using the formulas

o, =Y./(FN,) , (56) Y = yield
1 1 1
N = atoms
o, = YZ/(FNZ) . (57) F = neutron flux

The uncorrelated and correlated errors are given in the following table:

Error in Y Error in N Error

Foil Uncorrelated Correlated Uncorrelated Correlated in F
1 3% 27 0.5% 17 47
2 5% 2% 0.7% 17 4%

The error correlations implied by this table are between Y. and Y » and between
N1 and N,; the error in the flux F is fully correlated in %he two measure-
meénts because both cross sections were measured in the same flux. We can assume
that the error correlation for Y. and Y arises from a common detector ef-
ficiency calibration factor, whiie the €rror correlation for Nl and N2 arises
because the foils were both weighed with the same balance.

The formalism demands that five experimental parameters be considered.
Therefore, we write

o, =0 (Y

1 1 F) , (58)

9y =0y (¥}, ¥, N|, Npy F) (59)

We will see that the fact that Y, and N. are dummy variables in Eq. (58) while
Y, and N, are dummy variables in Eq. (58) leads to some simplification at a
later stage of the analysis. We can write

I"Yl
Y ¥
2
X = N | = N (60)
N2 F
[ F |
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and
FE T
Y1l
E E
Y2 Y
> >
E = ENl = | Eg (61)
Ex2 Ep
[ Ep

for the parameter vector and vector of parameter errors respectively. Use is
made of the notation of sub-vectors of a vector: Analogously, we can express
the covariance matrix Mx in terms of submatrices:

MYY MYN MXF
o7 My Mww Mye| (62)
ey Mpn o Mpr
Since F, EF and MFF are single elements, they are not affixed with vector or

matrix lables. The formalism demands that correlations between all five
experimental parameters be considered. From the nature of the problem, it is
clear that all the off-diagonal submatrices in Eq. (62) are zero matrices (all
elements zero) since no correlations exist between the different categories of
variables Y, N and F. Therefore,

M = MNN . (63)

Likewise, for the correlation matrix Cx we have

YY
C (64)

ol

I
O
L]
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Two sensitivity matrices of size 5 x 5 must be considered:

((aol/aYl) 0 0 _ .
_ o o 1Y
S = = § (65)
1 (30, /M) o IN
0 S
0 0 1F
| o (39, /3F))
and
[ o 0 0 .
S 0
0 (30,/v,) 2Y
— 2 : —
Sy = = SoN .
0 0
0 S
0 (30,/on,) 2F
0 (30,/0F) |

The fact that (801/8Y2), (aol/aN

2), (302/8Y1) and (302/3Nl) are zero is reflected
in Eqs. (65) and (66).

The remaining nonzero partial derivatives can be calculat
using the formulag:
(aoi/BYi) = 1/(FNi) = oi/Yi 1 =1, 2) s (67)
L 2=— =
(aoi/ani) Yi/(FNi ) oi/Ni (1 1, 2) , (68)

= = - 2y = - =
SiF (301/3F) Yi/(NiF ) Oi/F (1 =1, 2) . (69)

The covariance matrix elements are derived using the expression

Yo7 (S ®E) T e k) =1, 2 (70)
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It is left as an exercise for the reader to show that an application of matrix
algebra leads to

(71)

+ S (1, § =1, 2) .

2
iF Sy By

For this example, a size -5 problem reduces to two size -2 problems plus a
size -1 problem owing to the absence of correlations between several of the
parameters. Reductions in size of this sort happen often in covariance
analyses. The practitioner of the method should always look for such “short
cuts” to reduce labor. Further matrix algebra leads to the result:

o ] L]
w-olle] Lo )]

E E E E E.\2
1) ( Ex2 w1\ [ En2), (Er
Ho12 T o1 T 9% [Cynz <Y1 )(Yz )+ Cxm12 <N1 )(Nz >+ <F) ] » (73)

E E E
Y | e ¢ N2 F ]
Migp = 9 [( Y, +< A +H F . (74)

The components of E% are deduced from data in the table as follows:

=
[

2 4
Eq (0.03 Y,)2 + (0.02 ¥,)2 . (75)
E
Y [
2 5
Eyy (0.05 ¥,)2 + (0.02 Y,)2 R (76)
2 =
Eyp (0.005 N, )2 + (0.01 N,)2 s (77)
E )
N
2 - 2 2
Exo (0.007 N,)? + (0.01 N,) s (78)
2 - = 2 . 79
Eq Mep (0.04 F) (79)
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In order to evaluate M012 according to Eq. (73), CYY12 and CNN12 must be

determined. To accomplish this, it is Necessary to generate the covariance
matrixes MYY and MN The covariance matrix MYY has the explicit form

N.
2
Eq (0.02 ¥)) (0.02 Y,)
ﬁfy = , (80)
2
(0.02 Y,) (0.02 Y,) Eg,

and the covariance matrix E&N has the explicit form

E (0.01 Nl) (0.01 N2)

2
N1
- . (81)

=

NN
2

(OfOI Nl) (0.01 N2) EN2

The off-diagonal elements of ﬁ&Y and HﬁN are both positive, reflecting the posi-

tive nature of the correlations involved (as opposed to anti-correlations). The
off-diagonal element of CYY is given by

C = CYY21 = MYYlZ/(EYl EYZ) % 0.2060 s (82)

YY12

and the off~diagonal element of E&N is given by

“NN12 T Cnwa1 T Mywio/(Byp Eyp) ¥ 0.7327 63

Following more algebra, we learn that the fractional errors in 01 and 02 are:
(B /%) = Mg 0270 = 0,055 (84)
01" 1 011 1 ’
(Bgp/%) = Mg,0) 270, ~ 0.06818 . (85)
027 "2 022 2 *
The correlation coefficient linking these errors is

Co12 = Copy = Mgy5/(Eg Ey,) % 0.5600 . (86)
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It 1s clear from Eqs. (72) and (74) that we could have deduced the frac-
tional errors in 0) and o0; by simply combining the errors in the corresponding
experimental parameters in quadrature as one usually does. However, the
preceding detailed covariance analysis was required to show that there is a
substantial correlation (~56%) between these errors. It is evident from this
simple example that covariance analysis is a lot of work. In realistic appli-
cations, it 1s often impractical to perform the analysis by hand and one must
resort to the use of a digital computer. The preceding development started
from first principles, as embodied in Eq. (70), and indicated most of the
ensuing steps. In practice, one finds short cuts in most categories of
problems, such as we did in the present example, which help to reduce the
number of computational steps. It is beyond the scope of this report to con-
sider all these possibilities.
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Covariance information for
the standard €ross sectiong may be available from e

Standards File (Ref. 10). The question ig
to obtain the covariance matrix for t
addressed ip this section.

Assume that n ratios R, are measured
Cross sections are Si. The unknown cross

relationship

o = Ri Si (1 =1, p) . (87)
In vector notation we have

o =3 (&, % , (88)

> > >
where o, R and S are vectors representing

and the standard crosgg sections respectively. Assume that the ratio errors ER

- >
and the ratio correlation matrix CR’ as well as the standard errorg ES and the
standard correlation matrix CS’ are all available. Define

B
R
X = , (89)
g
and )
rE 0
.=} . (90)
0 Cg

It is assumed, apriori, that no correlati
standard values, so the off-diagonal subnm

d cross sections. The errors and cor-

the unknown crogg sections, the ragios,

valuations such as the ENDF/B~
how to combine thig information so as
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The rule for error propagation states that the covariance matrix M_ for
the unknown cross section can be expressed in terms of its elements by

_ —_— Ed T —_ —_— > -
Moij = (5, ®E )y eC o (Sj ®E) 4, =1, n) , (91)
where
~ Sgy O
5, = i1=1,n0n , (92)
0 S
- .
0
§Ri = (3"1/3“1). (1=1, n) , (93)
0 .
. 0]
Sqy = (aoi/asi). (i=1,n) . (94)
0 .
L -

E — —
ach of the matrices SRi and SSi has only one nonzero element, located in the

ith position on the diagonal. Clearly, from Eq. (87)

(aoi/BRi) =3

|
Q
~
=)

(i =1, n) , (95

i 1’4

|
Q
~
w
~~
ke

[]

(aci/asi) =R 1, n) . (96)

i 1'%
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Straightforward matrix manipulations lead to the result

- > T - - -+
= ® [ J
Mo1j = (Spq @ ER)" @ C @ (Spy ® Ep)

- > T = - > .
+ (ssi ° Es) ° cS ° (sSj ® ES) (1, 3 =1, n) . (97

Once again, we see that an absence of correlations between two sets of para-
meters in a problem leads to a separation of the analysis into distinct parts,

and reduces the size of the problem. Further analysis leads to the relatively
simple result

E E E E
_ Ri Rj Si S s .
Mcij = oioj CRij <—Ri ><Rj ) + CSij <—Si><—lsj> (4, j =1, n) (98)

rom this expression, one can readily calculate the unknown cross section errors

F
>
Eo and the corresponding correlation matrix Cc using the expressions

E 2 E 2q1/2
Eci = (Moii)l/z =0, <§Bi> + <§§i> (1 =1, n) , (99)
i i

= i = 100)
ccij Moij/(Eoi on) (14, j =1, n) . (
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V1. SOME COMMENTS RELEVANT TO THE GENERATION OF -
AND ERROR PROPAGATION WITH ~ COVARIANCE MATRICES

If the reader has mastered the preceding sections, he will now under-
stand how covariance matrices can be generated from properly specified
experimental errors, and he will know how to use the covariance formalism
in error analyses. At this point, it seems worthwhile to offer some sug-
gestions, and to indicate the current thinking within the nuclear data
evaluation community on this subject.

The ENDF/B-V evaluated data file includes covariance information for some
(not all) of the included evaluations. The subfiles known as the Standards
File and Dosimetry File generally provide information on covariances between
evaluated cross sections within a set corresponding to a particular reaction.
Information on covariances between different reactions is generally not avail-
able, although such information is often needed to perform correct analyses.
Covariance values are included in the MF = 33 sections. The covariance infor-
mation is recorded in various formats, and the user must examine the summary
documentation (Ref. 11) for the ENDF File rather carefully in order to be able
to extract the information properly. ENDF/B-V is the first version of ENDF/B
to include some covariance information. As such, there are still serious limi-
tations to the available information, and also some content is of questionable
quality. Nevertheless, it represents a start and the reader should have a look
into the matter.

It appears that there is a consensus among evaluators to the effect that
experimenters should report their experimental errors in some detail in their
publications and should make a clear distinction between the uncorrelated
errors and the correlated errors. The nature and origin of the correlations
should be specified. Some indication as to the sensitivity of the measured
results to the experimental parameters would be very useful to evaluators.

If ratios are measured, then ratios should be reported in the paper. The
evaluators generally agree that it is best if experimenters abstain from
evaluating covariance matrices for their own results and leave that job for

the evaluators. The most important reason offered is that information may

be lost if the experimenter does the job. Evaluators may have difficulty in
unravelling the effects of future changes in certain parameters and the errors
in these parameters if there are modifications with the passage of time (e.g.,
decay constants). Another reason is that evaluators wish to retain the option
of generating covariance matrices of size suitable for their own evaluation
projects. The necessary square size of an experimental covariance matrix
rarely needs to equal the number of data points reported by the experimenter.
Correlations often involve regions defined by energy limits, or by some other
characteristic of the experiment. Each region may involve several data points.
Under these conditions, a covariance matrix of square size equal to the total
number of data points would contain a number of redundant elements. This view—
point seems to be quite reasonable, but there may well be some specific cases
where i1t is worthwhile for the experimenter to evaluate his own covariance
matrices.



Concerning the use of covariance formalism in analyzing error Propagation,
one hears questions asked like: 1Is it necessary? Is the use of covariance
analysis a matter of judgment? Since the available covariance information ig
restricted and ig often of dubious accuracy, is application of the method
more or less impractical on the basis of the "garbage—in leads to garbage-out”
principle? Does it make sense to devote as much time to error analysis as to
the performance of the experiment and analysis of the results? Clearly, these
are valid questions! Yes, it is a matter of judgment asg to how one applies the
method. This 1ig true for all endeavors. If there are strong correlations in
the data, and these are neglected, then the calculated errors will not be very
accurate. If the correlations are weak, neglecting them may be quite acceptable,
The matter for judgment ig that of deciding just how accurately one needs to
know the eérrors, and, for that matter, just how accurately the uncertainties
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VII. COVARIANCE MATRICES AND THE LEAST-SQUARES METHOD
FOR SOLVING OVER-DETERMINED SYSTEMS OF LINEAR EQUATIONS

The reader who 1s weary, or has run out of time and is looking for a
natural stopping point in this treatment of covariance matrices could well
stop at the end of the previous section; some new aspects of covariance
matrix usage will be considered in this section and those to follow. But,
the reader who quits now will surely miss a most interesting and important
part of the covariance story. The development and application of proper
evaluation techniques is of considerable importance. The data base for
applications has expanded greatly during the last decade. It is time to
assess these experimental results and make as much use of them as possible
before contemplating new measurements of some of these quantities. The
gsituation has been summarized well by J. J. Schmidt (Ref. 12). It will be
seen in Section XI that covariance methodology can also be very useful in
routine data analysis applications. The reader should invest time to learn
this even if no professional evaluation activities are anticipated.

Everybody is familiar with the idea of a system of I linear equations
with I unknowns:

<
[

A X, +A X, + ... +AK

1 1171 1272 1T'1
Yk = Aklxl + Akzxz + o0 + AkIXI (101)
YI = Alel + AIZXZ + 0. + AIIXI

In vector notation, we write

<y
[]
1
[ ]
>

(102)

It is well known that not all such systems of equations have solutions. Some of
the equations in a system may give redundant information so that the system
is under-determined. Then, one ends up with a family of solutions. For example,

w
]

2 Xl + X2

(103)

o
L]

4 Xl + 2 X2

is an under-determined system of equations with
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_ 2 1
A= . (104)
4 2
The determinant of 2: designated IK] is given by
1Al = (2)(2) - (1)(4) = 0, (105)

so A is a singular matrix and the system has no unique solution, but rather a
family of solutions given by the equation

X2 =3 - 2Xl. (106)

Consider now the set of equations

3 = 2Xl + X2

(107)

4 = 2Xl + X2 .

By inspection, this is clearly an inconsistent set of equations with no exact
solution, As before, [A] = 0, but since there are non-zero elements in A, A
has rank > 0 (in fact the rank is 1). But, have a look at the augmented matrix

(A,%):

(A7) = . ~ (108)

There are 2X2 submatrices of (K,;) which have non-zero determinants, €.8.,

(109)

Ol
]
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with f6| = 2, Therefore, the rank of (K,?) is 2. Whenever the rank of

the augmented matrix (K,f) differs from the rank of A, the equations are incon-
sistent. It is a general theorem that the system represented by Eq. (101) or

(102) is consistent if matrix A and its augmented matrix (Z ?) have the same
rank, or, in other words, if the dimensionality of the largest nonsingular sub-
matrices in each are the same., If A is nonsingular, then the system automati-
cally is consistent and has a unique solution because the rank of A is I and

the rank of (A,Y) obviously must be I too. the solution is given by

’ (110)

where A1 is the inverse of A which is guaranteed to exist by virtue of the non-
singularity of A, By definition,

Alea=1 (111)

where T is the identity or unit matrix.

In applications, one is often called upon to deduce a best-value, or set

of best-values, from available experimental information. This is the definition
of evaluation. If there is only one experimental value available in the World
for some particular parameter, then it is the best value by default. If there
are several values available, generally differing somewhat from each other (with-
in limits) and possessing errors (or, hopefully, more complete covariance infor-
mation), then the evaluation process is not so obvious but may still be manage-
able. One possible approach is the generalized linear least- —-squares method.

The mathematical problem to be addressed is the following: Find the best
solution X (X essy, X ), in the least-squares sense, to the following over-
determined set of approximate equations which relate the results X to a set of

available quantities Y(Y ceey Y ) Assume that there is covariance matrix V
which provides the errors, and their correlations, for Y

Y, = Alle + A12X2 + ... + AlIXI

AgXp + AKXy Fleee ALK (112)

YM ~ AMlx1 + AM2X2 S AMIXI .

<
Q
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YxAe

The symbol

&>
between observables ? and the solution X,
way to find the best
vector X which minimizes the

that ong

.
L}
~

>
X

problem is the quadratic fo

x? =

x2 is a non-
immediately
mination of

large, so one of the ma

(?—KO)'(')TOV‘lo(f-—AO)?)zO.

negative scaler function of all the available input,
that the solution of the problem is going to involve a
the inverse of the covariance matrix,

possible solution to th

chi-square xz.
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(113)

is important because it emphasizes the approximate relation

The least-squares method says

The x2 for this generalized

(114)

One sees
deter-
Calculation of the inverse

is a time-consuming operation if the dimension of the matrix is
Jor tasks involved in applying the least-squares method

to evaluations is that of finding tricks for keeping the dimensions of the

matrices to be inverted as small

as possible4 One very useful trick, if the

correlations are confined to N subgroups of Y with no correlations between
groups, is to organize the problem so that V can be expressed in the form:

<|
[

. (115)

Then, the reader can easily verify that

1 -

is the desired inverted matrix,
much more quickly than the full

’-VII

Vi

(116)

The smaller-sized Vk matrices can be inverted
matrix. The covariance mgtrix will be M x M and

is non-singular provided that the available input values Y are the result of
M distinct observations (i.e., no Yy is derived from some combination of the

is problem is to obtain the

s o
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other available values). Thus, the inverse V-1 exists if the Job of set-
ting up the problem was properly done.

How do we find the X that minimizes x2 in Eq. (114)? It is not too
hard to derive the correct answer by an approach which should be sufficiently
rigorous to please most Physicists. This proof is presented here in some detail
because it gives insight into the basic concept of linear least-squares analysis.

The quantities K, Y and f (or V-1) appearing in Eq. (114) are fixed by the
nature of the problem. Only X is a variable. Let us write Eq. (114) in
the form:

03, =FR =F-AeHTevle (T-1e7. (117)
X

what happens to x2 if we change i by an increment di? To answer this,
we have to gather courage and plunge into the Calculus (involving matrices). We
can write:

), ,=FR+d) =[T-2e X+a)]Tevle[t-XeF+ad)]
(

X+ dX 118)

Let's do some matrix algebra:

F(§+d§)=[?{-KOf(—Ade]TOV'lO[?-K.0§—A0d§]

(Z-A%a)T e 7 1e (Z-21ead), (119)

= [ZT - (A @ aX)T] @ 71 o [Z - (X ® a¥)]
if we define, for convenience,
z=Y-h2e% . (120)

Then, remembering that matrix multiplication is not commutative,
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FX+d¥) =2T e y-le 3
- [ET e vVie(AedX)+(Xe dX)T o V-1 o E} (121)

+ (A0 d)T e V1 o (X ® g%) .

The third line on the right-hand side of Eq. (121) 1s second-order in dX and
will have a negligible magnitude as dX approaches zero, relative to the
other terms. Therefore, in the tradition of the Calculus, we can neglect it.
The first line on the right—hagd side of Eq. (121) is seen from Eqs. (117) and
(120) to be simply (x2)§ or F(X). Thus, Eq. (121) becomes:

d(x2)i = dF(X) = F(X + a%) - F(%)

=-2Tevle (Redk)- (e dl)T 71 e ) (122)

- [T e V1) e (Ko ak)] - [T e #1)T e (X ax)]T .
We used two laws of matrix algebra to arrive at this result:

One rule states that for any two arbitrary matrices Cl and Cz,

— - T —T ;T
(Cl ° CZ) 2 1 . (123)

The second rule states that for our nonsingular symmetric covariance
matrix,

(V1T = (¥T)=1 = §-1, (124)

so the inverse V-1 of V isg also symmetric,

But, the transpose of a scalar quantity is just the scaler quantity itself,
and Eq. (122) is a scalar equation. Therefore, Eq. (122) becomes

d(x2)g = dF(X) = - 2(ZT o §-1 o %) ® q} (125)

The quantity x2 has a minimum when its differential 1s zero for small variations
dX about the minimum. Therefore,
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ZTevled =0 (126)
is the condition for a minimum in xz.

Applying the rules of matrix algebra given above, we get

JTe7ler=12T @ (7l e2)

1]

[

(! e )T 0 Z]T = (V-1 0 B)T o 2 (127)

ATevlez-=o0.

Substitution of Eq. (120) into Eq. (126) leads to
- - EY - -— - ES
ATevliey=(aTevlen ex (128)

The matrix (AT @ V1 @ A) is nonsingular with size I x I, therefore,
there exists an inverse which we can call C:

C=(aT o V1 @ 1)1, (129)

>
The desired least-squares solution for X is thus:

¥=CealTevley (130)

The matrix C is the covariance matrix for the solution i. Since
I < M, the calculation of C is generally not as big a problem as
evaluation of v-1,

Important information can be deduced from the minimal xz, calculated with
Eq. (114) using the solution vector X. X2 ghould be distributed according
chi-square tables applicable to the actual number of degrees of freedom f for the
problem. Chi-square tables for Normal distributions are available from many
sources (e.g., Ref. 9, p. 313). As an example, assume that 25 items of data (M)
are evaluated by the least-squares method in order to yield a result consisting
of 15 best values (1), with a x2 of 7.92 according to Eq. (114). The number of
degrees of freedom f (= M~I) in this problem is 10. According to Table C-4, p. 313
of Ref. 9, the probability of observing a x2 this size for the evaluation problem
is in the range 60-70% which is reasonable. A crude interpretation of this result
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is that the scatter of the input values is consistent with the assigned errors.
A large resultant X2 with low probability would imply an inconsistency between
the actual scatter of input values and the errors claimed for them (perhaps

What should be done if a large x2 with low probability is obtained from a
least~squares analysis. The matter has been touched upon by Peele (Ref. 3),
Mannhart (Ref. 7) and Poenitz (Ref. 8). If there are several degrees of free-
dom f, it is reasonable to expect approximately 50% probability for x2/f to
be near unity. If x2/f >> 1, then one possible approach is to make an ad just~
ment to the solution covariance matrix C by multiplying it by x2/f. This
is equivalent to multiplying the covariance matrix V for the input data by
the same factor. There may be justification for this step if the evaluator
feels that the input errors were underestimated, but it is a crude "ad justment"
at best. If y2/f {s much less than unity, one should not reduce the errors.
Problems caused by shape inconsistencies rather than excess scatter should not
be dealt with by scaling the covariance matrices.

Example: Evaluation of a single cross section

An evaluator wishes to obtain the best value for a cross section o,
and its error. He scans the literature and finds two values with their
reported errors as follows: S, = 1,85 b(£6%) and S, = 1.94 b(%8%).
Based on the available information, he estimates that the errors are ap-
proximately 50% correlated.

Since the evaluator seeks a cross section, and is given cross section
data as input, the equivalent+of Eq. (112), with Y replaced by vector §
consisting of S. and 82, and X of o only, is:

1
Sl ~ 0
(131)
82 0,
with the A matrix quite simply
_ 1
A= . (132)
1

The covariance matrix V-is:

_ 1.232 0. 8614
V=102 . (133)
0.8614  2.409
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The corresponding inverse matrix is:

_ 1.082 -0.03870
v-1 = 102 . (134)
-0.3870 0.5535

Therefore,
_ _ 1.082 -0. 3870 1
(AT @ V71 @ &) = 102[1,1] @ ° (135)
-0. 3870 0.5535 1
= ¢l = 86.15,

a simple scalar. The covariance "matrix" for the evaluated cross section is
the reciprocal (inverse) of this scalar. Therefore

C=2C=1.161 x 10™2 (136)

The solution ¢ (evaluated cross section) is given by

c=CcATev-1le3}d

1.082 -0. 3870 1.85
(1.161 x 10-2) (102) [1,1] e ° (137)

1.868b .

The error in o is given by cl/2 5 0.1077b. So, the evaluation procedure has
given as the best estimated value, the result o = 1.868 b(*5.8%). This solu-
tion leads to a X2 of 0.3220 which indicates reasonable consistency (50-60%
likelihood range) for the input data.

If we had ignored the correlations in the errors of the input data, and
performed an evaluation using the formalism of this section, we would have
obtained the value o = 1.880b(4.8%), which is just the weighted average of
the two results as derived from the expression



-36~

= (1.85/6%) + (1.94/8%)
(1/62) + (1/8%)

. (138)

The use of covariances in the generalized linear least-squares method leads
to a better estimation of the cross section. The formalism also provides the
covariance (error) for the evaluated result, and a x2 which measures the
consistency of the input data.

The error which is obtained when the correlation element is ignored is
smaller in this example than the error obtained when the correlation element
is included. It has been claimed that the inclusion of complete covariance
information in evaluations reduces the error. Apparently this is not always
a true statement. It does not prove to be the case in the example here.
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VIII. ONE METHOD FOR GENERATING EVALUATED CROSS SECTIONS
FROM A DATA BASE USING THE LEAST-SQUARES METHOD

The basic rules of least-square evaluation are straightforward, but real-
istic problems are usually sufficiently complex to require approximations and
assumptions to be made to reduce the labor to manageable levels. Special
techniques need to be developed for most specific applications. This section
will deal with a particular type of problem which is more realistic than the
simple example of the previous section, and a least-squares method for solving
it will be indicated.

Suppose we want to represent a cross section excitation function by I
-
group average values 0 over an energy range (El’ Eh). Energy limits for the
groups are selected on the basis of available experimental data for the groups.

0'4 5
o o 03 xx I-2
1 2 x> [xxl O1-1
. r‘i*'r;xd—' | X X
_xxl x [
X | l l | lx | |
| L : : I R g
see X, X
{ : ‘ b : B
|
11 12 13 14 | |1—2!1—1|1|
S I N I W | 11 |
E, B, Ey Eg Eg Ei, Brog By Epg
(=E,) (=E,)

No apriori knowledge of the true cross section (shape or normalization) is
available, so we must do the best we can with the experimental data on hand.
Assume that there are J different experimental cross section sets available
from the literature for the range (Ez, Eh). Assume that the data base and

selection of group energy limits (El,..., EI+1) are such that no group is void

of experimental data. No information about the structure of the cross section
within a specific group is sought. Hence, each measured value is considered
to be an approximation to the group average value for the group where it lies.
I1f there is only one experimental value available for a particular group, then
the derived group value may be very uncertain. However if there are many
experimental points scattered in energy throughout the group, this least-
squares method should give a fairly reliable group-average value. The reader
who is familiar with Monte Carlo techniques will recall that integrals can be
calculated by sampling functional values within the specified limits of inte-
gration. The group average cross section is derived from the integral of the
true excitation function over the group interval. The experimental values
correspond to a sampling of the cross section at various energies within the
group interval.



-38-

The evaluation effort is considerably reduced for this problem if the
correlations between the various data sets are small enough to neglect. This
may not be true for all the data sets involved, but surely it is very likely
that it is true for some of them. By judicious organization of the input
values, one tries to create a covariance matrix V for the input data which has
large blocks of zero off-diagonal matrices. Generally those uncertainties
associated with specific aspects of individual experiments are uncorrelated
with those for other experiments, and these uncertainties often are dominant
contributors to the total error. Common or strongly correlated standards
can introduce sizable correlations for data sets unless the standard error is
small (e.g. the hydrogen cross section).

Before beginning the evaluation, the input data should be cleaned up by
performing the following operations as required:

i) Correct all data to latest values of decay constants, standard
cross sections, etc.

ii) If the errors for two cross section sets are so strongly correlated
that neglect of the correlation would be significant, then consider
these two sets together.

iii) Construct the covariance matrices for each set (if not available),
and for coupled sets as per (ii) above.

etc...

An example of the data preparation process appears in a recent report by
Tagesen et al. (Ref. 13). Poenitz (Ref. 8) also discusses this topic.
Strictly speaking, it is not correct to evaluate cross sections for an

" individual reaction alone as implied in this example. However, it is not
always practical to perform simultaneous evaluations for several reactions.

The evaluation proper begins when the evaluator collects all the prepared
data into K sets (K ¢ J < M) where M is the total number of available cross
section points. The K sets are represented by the vector

NW oco’_‘w

with covariance matrix V of the form

v, 0
vV = ‘e . (140)
|0 Vk

’ (139)
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The K sets are formed so that the errors for each set are considered uncorre-
lated to those for the other sets. The dimensionalities (number of experimen-
tal values in each set) are M,,..., ME with sum equal to M. We could

consider keeping M as small as possible by averaging all the data from a

given experiment which falls in the same group to one value. From Eqs. (115)
and (116),

. . (141)

An MxI matrix A can be expressed in terms of K submatrices'XL with dimension
kaI as follows:

]

, (142)

N4

The elements of the Xk matrices are either zero or unity depending on how

the experimental data relate to a particular group. For example, the element
(Ak)mk 1 is unity 1if the mk-th value for experimental set k corresponds to
’

group 1, while (Kk)mk 41 1s zero for all i' # 1.
’

Then, according to the formalism of the preceding section, the solution

vector 3 (I evaluated group cross sections) is given by:

CeAT eyl e3d

Qv
]
(@]

1]
(91

- - —
) (A{ . vll . §l + ...+ AL o VKl . §K) , (143)

while the covariance matrix C for the evaluation is deduced from

= 3T e V-1 o % 3T o U-1 ) A
A7 ® Vl ) Al oot Age Veh o Ay (144)
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Derivation of Eqs. (143) and (144) is a straightforward problem of matrix
manipulation which originates from the rules supplied by Eqs. (129) and (130).
So, the evaluation problem-exclusive of data preparation-consists of inverting
K matrices Vl""’ VK with squares sizes Ml,..., MK’ and one matrix C 1 with

square sizes I.
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IX. USE OF AN APRIORI AND LINEARIZATION OF
NON-LINEAR LEAST-SQUARES PROBLEMS

There is an inherent limitation to the approach taken in the last two
sections. It requires a linear relationship between the input observables,

;, and the solution to the problenm, ;, as expressed, for example, by Eq. (112).
This excludes, quite clearly, the possibility for considering observed ratios
of quantities in the evaluation procedure. Since much useful nuclear data
comes to us in the form of ratios and other nonlinear forms, this is not a
tolerable limitation. In this section, we look at another approach to the
least-square problem which enables us to bypass this limitation. This involves
use of what is known as the apriori estimate. It is an approximation method.

Suppose that one has available a set of measured quantities E (El, ceey
) with a covariance matrix V. Assume that each of these measured qugntities
approximates a function f; of the desired evaluated cross section set o (01, vee, OI)
according to

g =~ fm(E) (m=1, M) . : (145)

.’
Now, suppose we have an apriori estimate of ; which we designate % (010’ ooy
010). Each value fm(;) can be related to the corresponding fm(go) by means

of the approximation

1
> > of
£a(9) = £,(0y) + Z <a—“‘> (0, = 0,0) (146)
i=1\9%/p

> >
which is a truncated Taylor's series expansion. Next, define vectors x and y
by means of

Xy =0 = Oy (1=1, 1) , (147)

Yy = & " fm(éo) (m =1, M) ] (148)

Then Eq. (145) can be expressed in the form

L of
ym P~ E 3_0:{ o xi (m =1, M) . (149)

i=1
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Equation (149) is identical to Eqs. (10l) or (102) provided that the elements
of the matrix A are defined as the partial derivatives

of
i/0

>
calculated using the apriori estigate 0,. Furthermore, since no error is
assumed for the apriori estimate 00 in this derivation, the covariance matrix

- +>
for ; is also V while the govariance matrix C for the solution x is also
the covariance matrix for o as derived using Eq. (147). The matrix C is cal-
+

culated using Eq. (129), and the solution vector x (and thus 3) is obtained
from Eq. (130). Equation (114) can be used to calculate the apriori chi-square
and the chi-sqgare provided by the solution. The apriori chi-square 2 ig
obtained when x is set equal to the zero_vector in Eq. (114). The solution

x2 is obtained when the solution vector x from Eq. (130) and the matrix A

from Eq. (150) are used in Eq. (l14).

An improved solution can be sought by means of itergtion, and convergence
of x2 can be used as a test. When the apriori estimate 0. is reasonable, one
can expect the iterative process to lead to convergence rather quickly (two to
three passes at most). Owing to the time consuming nagure of matrix inversion,
selection of a physically reasonable apriori solution 00 is quite important for
practical reasons.

If €m approximates a particular cross section oi’ then

>
fm(o) x o , (151)
1 if i' =41
Ami' = (152)
0 if 1" # 1 .
When Em approximates a ratio of two cross sections in the set, then
£(3) % o /o, 153
m °1/% - (153)
/o' 4if 4" =4
= e 2 " = '
Ami" °1/°1' if 1 i , (154)

0 if 1" # 1 or {' .

Using this formalism, ratios are as easy to handle as cross sections.
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X. HOW TO UPDATE AN EVALUATION WITH NEW DATA WITHOUT
PERFORMING A COMPLETELY NEW EVALUATION

Often an evaluator will be faced with the task of updating an existing
evaluation by including one or more new data sets. He would like to not have
to redo the entire evaluation. This section addresses this special problem.

First, we need to define the term relative covariance matrix. Suppose
>

M_ is the actual covariance matrix applying to a set of quantities x. Then,
the relative covariance matrix M corresponding to Mx is deduced from the formula

Mxij = xiijij (all { and j). (155)

The elements of M are therefore dimensionless.

>
Suppose we have an evaluated group cross section set 00(001,..., OOI)

with a corresponding relative covariance matrix EO' A set of new experimental
values E(El...,gz) with a relative covariance matrix Vg becomes available. We

wish to generate a new evaluation 31(011,..., olI) with a corresponding rela-

tive covariance matrix El' How can this be done?

Consider the I cross sections o as+ingut data with relative covariance
matrix C0 and the L new values as additional input data with relative covari-

ance matrix Gg. Also, consider the apriori function OO(E) defined by ;0

itself. Then, define a new vector ; (with dimension I + L) by

01 01
ym = S = 0, (m=1,..., 1),
01
&2 7 %20
y = (2 =1,..., L). (156)
I+4 €00

For this method to work we must assume that the new data set is uncorrelated

- >
to the original evaluation. Then, the actual covariance matrix Vy for y is
simply

(@]
Ql

\' = . (157)

o
<
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We seek ;l defined by

[¢] -0
11 0i
X, = <_._o__.)(i = 1,000, I). (158)
01

The solution to this problem is derived from

X, = C ei e Vsle v, (159)
c.-! = iley-lej (160)
1 - y ’
where
A
£

KO is simply an I x I dimensional unit matrix as can be seen from an inspection

of Eqs. (156) and (158). Since we linearize the problem by using the previous
evaluation as an apriori function, A, will be a matrix consisting of elements

whose values depend upon the character of the new information.

Equation (159) can be written in the form:

- T -
-1
N Ao-| Co" O )
X = C [ ] @ @
1 1l - = o-1 >
AE 0 VE yg
= C. A o7-le3 (162)
1 £ 13 '3

+> +> +>
where yE 1s the subvector of y with elements yI+l""’ yI+L° Ehe rest of y

consists of zero elements according to Eq. (156). The matrix C1 is derived
from the relation
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i [&r e
: -

1 = _° o _0 K 0 (163)
o V-

A £ £

el

>

Equation (163) leads to the result

2l o T ealer +iTei-lei
¢ Ao Col oAy + K e Tl o K,
= ccl+iL eyl e (164)

since Xb is and T x I unit matrix. Clearly, calculations based on Eqs. (162)
and (164) involve much less work than would be encountered if the entire eval-

<>
uation were repeated. The vector 9 is derived from

o = oOi(l + x (i=1,..., I) s (165)

11 li)

and the matrix C1
The method indicated here can be generalized to include several new, inde-

pendent data sets. The reader should be able to convince himself that J new
data sets lead to a solution of the form:

> _ = =T =_1 >
x) Cl.<ZA£j.V€j.ij>’

is the relative covariance matrix for the updated evaluation.

J
L= Gol+ L K, eT;lek . (166)

where the subscripts j apply to the data sets j =1,..., J.

Although we have considered both linear and nonlinear least—squares pro—
blems in Sections VII-X, this discussion has not exhausted the possibilities
of the least—squares method. More general formulations can be developed which
allow, e.g., even the adjustment of elements in y and in the transfer
matrix A from Eq. (113) in order to satisfy a least squares condition. Perey
(Ref. 4) has discussed such formulations in his treatment of spectrum unfolding
for dosimetry applications. This subject will not be pursued here, so the
reader should refer to Ref. 4 if he is interested in some of these other possi-
bilities.
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XI. USE OF THE LEAST-SQUARES METHOD IN DATA FITTING

Sections VIII through X emphasize applications of the least-squares
method to data evaluation. Formal data evaluation is very probably an in-
frequent activity for most experimentalists, but there are many applications
of the method described in Section VII to everyday data processing activities.
The objective of this section is to indicate the potential of the method and
to stimulate the reader to pursue the matter further.

Data averaging and curve fitting are routine activities for experimental
Physicists. The least-squares method and covariances can be used to formulate
these operations in a very general and flexible way. The technique of lineari-~
zation by means of an apriori can be used to deal with a variety of non—-linear
problems as well. The best way to approach this topic is through examples.,
Four examples will be presented in this section.

Example: Averaging Uncorrelated Data

Suppose that two independent measurements have been made of the same
physical quantity yielding (y,, E 1) and (y2, Ey,) for the experimental
values and their errors. The indeendence of cﬁé measurements insures that
the errors are uncorrelated. What is the best estimate (x, Ex) for this
physical quantity and its error based on the available data?

The method of least squares 1s directly applicable to this problem.
It i1s a rather elementary evaluation exercise.

The equivalent of Eq. (112) is

ylzx

Yy X x. (167)

The matrix A of coefficients 1s thus quite simply

1
A= . (168)
1
Likewise, the value vector ; and covariance matrix V are
+ yl
Y u , (169)
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Vis a d}a
inverse V-

<!

We now hav
method.
explicit a

<

Ol

invers

C =

The required formulas are Eqs

[ 2 ]
Eyl 0
R (170)
2
0 E
i y2 |
%onal matrix since the errors for § are uncorrelated. The
is given by
[ -
Eyl 0
= . (171)
-2
0 Ey2

e all information needed to apply the generalized least-squares

« (129) and (130). Here is the

nalysis:
[ -2 ] " =2
Eyl 0 . Ey1
A= . = . (172)
=2 -2
0] Ey2 1_ Ey2
- - R i
-2
E®
=AM o7 loeza [1,1] @
-2
EyZ
- (173)
-2 -2
Ey1 + Ey2 (a scalar).
e of the scalar C-! is its reciprocal
-2 -2, -1
Eyl + Eyz) . (174)
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According to the theory, the error Ex_in the derived "best" value x can be
extracted from the covariance matrix C via

E_ = C. (175)

E = E + E (176)

relating the errors in the measured values to the error in the derived
"best"” value.

Proceeding with the analysis, we have:

-2 [ -2
E 0 E
yl Y 1 Py
= =] b d
V "ey= o = . (177)
-2 -2
fy2 | Yy Y, Ey
=T =--1 _* -2 -2
Abev Tey =y E T4y, Esp (178)
-2 -2
X=x=Ce AT oV 1 oy = 1 y; zZ_y2 ). (179)
E ° + g2
yl 2

Eg. (179) indicates that the "best” value x is the weighted average. The

X" for this averaging process can be derived by inserting the solution into
Eq. (114). So, we see that the least squares method enables us to derive

a familiar result in a very general way, and it gives a X° value to test
the consistency of the input data as well.

Example: Averaging Correlated Data

Refer to the preceding example and assume that the errors E and E 2
are correlated. Such a correlation is actually very likely 1if Y1, and yo~

have been measured in the same laboratory using similar techniques. Let Q
be the correlation matrix given by



3 = - , (180)

since 957 and q o Dust be equal by the symmetric nature of 6. Thus, the
covariance matrix V is

2
Eyl quEylEyZ

<l
|

2 (181)
A2B51By0 By .

The analysis needed to derive (x, Ex) proceeds much as it did for the pre-
ceding example. The results are:

2 -
| B2 432E51By0
v-l = |¥] 2 , (182)
9128v1By2  Byp
with the determinant VI equal to
v| = 2 2 - 2
IVl =2 2 E,% -q,D
and
Ex'2 = C~1 = AT ¢ v-! e A (a scalar)
= - 2y-1 -2 -2 -1 -1
(1 415 ) (Eyl + Ey2 2q12 Ey1 Ey2 ), (183)
and




arguments. The solution reduces to the result from the preceeding example
when 93, 80es to zero (no correlation). The case where 4;o approaches unity
(fully correlated errors) presents special problems. Matrix V approaches

singularity so the problem would appear to have no solution. This is not the
case as can be seen from a closer examination of the mathematics. The errors

- 2 2.1/2
Eyl (e1 + E<)
(185)
- 2 2,1/2
Ey2 (e2 + E<)
where E is the common correlated error and e] and ey are the statistical
errors. Then,
q = E2/E E . (186)
12 yl “y2
The following limits are approached:
q12 -_—— 1, (187)
e e, <K E
E E E ——— E, (188)
yl* “y2* “x
e & <K E
=2 =2
—_— 1% ty,e, (189)
X e., e, < E -2 -2 *
1> =2 e + e,

The physical interpretation of these results is clear. When the statistical
error becomes very small, the error in the "best" value approaches the common
Systematic error. The best value is the weighted average of the measured
values, using only the residual statistical errors to calculate weighting
factors. When the statistical error becomes totally negligible, x =Y ey
and Eq. (189) is not needed. Whenever the systematic errors are dominant,
Plural measurements of a physical quantity will hot lead to an improvement

in accuracy. Researchers tend to overlook this important fact.
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Example: Legendre Expansion Fit to an Angular Distribution

Angular distribution data
are usually fitted using Legendre
polynomial expansions. Conven-
tional methods generally ignore
the possibility of correlations
in fitting the data. Using the
generalized least-squares method,
we can perform the fitting either
with or without assumed input
correlations. The method will
be indicated in this example
which considers the fitting
of an m-term expansion fit to n
data points (n > m). The experi-
mental data points y. ,ees,¥q (¥)
are assumed to have érrors

[ —— ———— —— —

-)
E ;,000,E (E,) whose corre- _ — -
1X%ions_a¥2 defined by the nxn cos® = -1 cosd = 0 cosf = +1
matrix Q,
1 9yp e q1n
Q = d51 1 eee Aoy , (190)
qnl 9,9 o 1
with
9y = i,
(i, = 1,n) (191)
935 = 951°

If all q are zero for 1 # j, then we have the case where the errors
in the digtribution points are assumed to be uncorrelated. The function
to be fitted to the data is

m

Y(é) = E pj Pj_l(cos 0) (192)

j=1
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where P, . (cos 8) is the Legendre polynomial of order J - 1. The
least-s uares problem consists of finding the best set of values
pl,...,pm (p) to satisfy the set of approximate equations

m

yy = E : Pj Pj—l (cos ei) (193)

j=1 (1 = 1,n).

It is assumed that the angles 8; (i=1,n) are precisely known. Eq. (193)
is equivalent to Eq. (112), or to Eq. (113) if we define A as the nxm
matrix

11 12

21 Y (194)

anl

with elements

a5 = Pj_l(cos 6,) (195)

(1 =1,nand j = 1,m),

and E equivalent to the least-squares solution vector X. The covariance
matrix V for this problem is the nxn matrix

vll vlz LN ] v

V= v v (196)

21 22ttt

v v . v
nl n2 ** “mn
L -

whose elements are given by

v = E E
13 ~ Y13 By1 Py

(1, = l1,n).

(197)



The formal solution to this problem is given by the following three
equations:

C=(a' @ v-! @ 1) -1, (198)
> - =T - +

p=CeA oeV! ey, (199)
2=(y-Aep)evle(y-iep. (200)

x2 is distributed according to chi-square tables fog (n-m) degrees of
freedom. The covariance matrix C for the solution p is the mxm
matrix

-cll 12 *** Cin ]
C= Jcy G wov S| o (201)
-c;l Chp cc cmmd
The expansion coefficient errors Epl""’Epm (Ep) are given by
E. =Y ¢ =1,mw, (202)
PJ i3
and the correlation matrix D for the coefficient errors is the mxm
matrix
[ 1 d12 ces dlm-
D= |d 1 e dy (203)
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with elements given by

=c,./(c,, c,)}/2

dij ST 33 (204)

(1,5 = 1,m).

This elegant solution to a rather complex problem can be readily programmed
for a digital computer—especially if explicit matrix manipulation routines
are available. The procedure yields far more information about the solution
than one derives from more commonly used least-squares formulations.

Example: Legendre Expansion Fit to Differential Plus Integral Data

The preceding problem was basically linear. We now consider a problem
which is nonlinear. Again, we address the matter of fitting a Legendre
polynomial expansion to angular distribution data. This time, the data
points are explicitly given in the center of mass (c.m.) system, and we
are faced with a situation whereby only forward-angle values are available.
Back angle measurements were excluded by an experimental limitation.
Experience has shown that forward angle data alone are often insufficient
to enable a good fitted curve to be generated. Therefore, in this experi-
ment, a determination was made in the laboratory system of the ratio of
integrated forward events to integrated backward events. The problem is
to devise a scheme for determining the "best" set of Legendre coefficients
consistent with the available differential and integral information. The
inclusion of integral information generates a nonlinear problem. For
simplicity, we will consider a c.m. expansion with only three coefficients

Py P, and P3 (E), then

= 0) = 6 0
Y. = Y(9) Py +p, P, (cos 6) + P, Pz(cos ). _ (205)

Input data consists of n experimental angular distribution points
yl,...yn (;) in the c.m. and a measured laboratory forward-to-backward
ratio R. The corresponding errors are E 12eeesE (E,) and E_. The
angular distributlon points are assumed to be co¥¥elated as specified
by an nxn matrix Q defined as per Eqs. (190) and (191). The
forward-backward ratio R is assumed to be uncorrelated to the distribu-
tion points.



Eq. (205) provides an
expression for calculating
angular distribution points
in the c.m. system in terms
of the elements of $. We
need an expression which
relates the calculated
forward-backward ratio to
the elements of $. Since
the calculated distribution
applies to the c.m., and B
the forward-backward ratio
is a laboratory quantity,
some algebraic analysis is cosh = -1 cosf =coso' cosf = +1
required to generate the
required formula. This involves straightforward laboratory to c.m.
conversions. We will simply give the result here. Define the following
quantities: m, (incident particle mass), m, (target mass), m (detected
reaction product), m, (residual nucleus), 6 (reaction Q-valud), E 1
(incident particle energy in the laboratory), E (= E + Q) and E

e — - —— —
b a— —— — G t—

(energy of detected particle). Let 3
B =mmy (E,/EQ)/[(m; +m,)(my +m,)], (206)
§=m oMy, (1 + le/m T)/[(m1 + mz)(m3 + m4)], (207)
1] - -
o = -st [EFH2, (208)
The angle ' is the c.m. angle corresponding to 90° in the laboratory.
The calculated forward yield F. and backward yield B, are determined
from
e'
Fc = Y(8) d6 = f1 Py + f2 P, + f3 Py» (209)
0
L

Bc = j Y(68) do = b1 P, + b2 P, + b3 Pse (210)
e'
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The desired calculated ratio Rc is thus

£, p, +£f, p, + £, p
R =F /B =( 171 2 72 3 3)

c ¢’ e 1 pl + b2 p2 + b3 p3
where
fl =1 - cos 6' b1 = cos 6" + 1}
£ =X gin 2¢1 b, = - & gin 2¢°
2 2 2 2
=Ll N 3 3 g1 =1 3 g0 _ 1 '
f3 2 cos 6 7 cos’ 6 b3 3 cos’ 6 5 cos 6

Clearly R is nonlinear in the expansion coefficients ;. We now
proceed to lin€arize the problem and set up the equations for the least-
squares*analysis. We need an initial guess for the parameter set P,
called p.. This is not to hard to come by, especially if we remember
that the“scale (or normalization) can be estimated from the expression

f Y(8) dQ = 47 P,
4

m

Now define x according to
xk = pk - pOk (k = 1,2,3).

> The vector x is the differencg vector for the desired solution
p and the initial guess (apriori) Pye Let £ be the vector of n+l
experimental values:

£, =vy; (d=1,n),

(211)

(212)

(213)

(214)

(215)

(216)
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Let EO be the vector of calculated values based on apriori parameters
Pg*

€0y = Yooy = Yol8) (1=1,n), (217)

€. nt1 ™ Reo® (218)

Let ; be the difference vector defined by

= £ (i=1, notl). (219)

% 1~ %ot

The first n linear equations required for the analysis are

Yy =Yg =Py + Py P (cos 8) +py P, (cos 8), (i=1,n), (220)

and it can be shown readily that the set

z, =~ X, + Xy P1 (cos 61) + Xy Pz(cos 61) (i=1,n) (221)

is completely equivalent. We now need an expression for z R can
be approximgted by a truncated T§ylor s series expansion iR %he cS-
efficlents p around the apriori Pge Based on Eq. (214), the formulas
are:

3R 3R 3R _
Re=Rpo? (355)0 x * (355)0 + Gy )o 32 (222)
3R 3R ®R_
2er1 & (G500 X+ (G50 g + (55000 %3
1 2 P3
(223)

- - 2 -
= (Bco £~ Foo bk)/Bco (k = 1,2,3).
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These results can be combined into the expression

+ - >
zZ~ A @ x (224)
where
r -
1 %12 413
A= a5, a,, a,3 R (225)
fo+1,1  %n41,2 an+1,3J
and
3 1, ai, Pl(cos i), a,q P2(cos i)’ (i=1,n) (226)
R
c
an+l,k = (552)0 (k=1,2,3), (227)

The use of the apriori parameter vector ﬁ has enabled us to
generate a linear problep which relates differgnces Z begween the
experimental quantities £ and calculated apriori values ,» and
differences X between the desired solution parameters 5 agd the
initial guess (apriori) set E » No error is assumed for the apriori

uantities, so the covariance matrix V for the difference quantities

Z can be derived readily from the experimental errors Ey and E, for
the input data, and the correlation matrix Q for the angular dgstri—
bution point errors. So

[ Y11 V12 Vo4l
vV = v21 v22 ces v2,n+1 (228)
Yotl,1 Vnbl,2 v Vn+l,n+1J
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where

iy T 933 Eyy Eyy (h37L,m),

- 2
Vorl,ntl ~ ER%s (229)

vn+1,i B Vi,n+l © 0 (i=l,n).

The formal solution to the problem is provided by the formulas

C=(af @71 @ B)-1, (230)
> - -T o-1 >

x=Co0A ovVlegz (231)
2=G-Aex)Teile(-%em, (232)
> > >

P = Pg + x. (233)

For many nonlinear problems, it is worthwhile to iterate at least once to
see if x2 can be further minimized. This is accomplished readily by using
the solution § from the first pass as the new apriori 3., for the second
pass, and then repeating the analysis indicated above. Experience with
problems of this nature has shown that if the initial B, is anywhere near
being reasonable, then convergence will be very rapid and little is gained
by proceeding beyond two or three iterations. Examination of x2 (Eq. 232)
at each stage of analysis grovides the means for judging the progress
toward convergence. The x° series is derived from the formulas

X2 =z ey-loe ;o (initial)

e7-1le (z,_, -4 X)) (1=1,2,...), (234)
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where the subscript "i" indicates the particular iteration. A poor initial
choice for the apriori parameters may cause the problem to converge toward

a nonphysical solution, or oscillations may develop which prevent convergence
of the series indicated in Eq. (234). When convergence is observed, the value
of x2 provides a direct indication of the quality of the fit. If the final

x2 indicates a very low probability in chi-square tables for the appropriate
degrees of freedom (this example has n-2 degrees of freedom), then either the
input data are inconsistent or the fitting procedure converged to a nonphysical
solution. A plot of the results will usually indicate what has happened.

The matrix C from Eq. (230) has the form

‘11 %2 %13
C = 5y Cyo Cyq , (235)
L€31 €32 C33.
and is the covarignce matrix for the solution %, and hence also for B.
The error vector E, for the solution and its correlation matrix D can be
derived from the formulas
E. = (e, )% (k=1,2,3) (236)
pk kk y bl ]
dij = cij/(Epi Epj) (1,3=1,2,3), (237)
where _
(1 4, dp
D= d21 1 d23 . (238)
Ld3;  dyp 1

One final important point needs to be made before closing this section.
In parameterizing data, such as was done in the preceding two examples,
correlations will probably be introduced by the fitting process even 1f the

initial data are uncorrelated.

In parameterizing data, we convert from a

"coordinate”

system which may or may not be orthogonal to a totally
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different system which probably will not be orthogonal. Therefore, one
should use proper least-squares techniques which involve covariances,
even in fitting uncorrelated data, if one wishes to gain a proper under-
standing of the uncertainties in the results.
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XII. CONCLUSIONS

Covariance and least-squares methods are elegant and versatile analytic
tools. The formalisms are simple and easy to use in principle. The useful-
ness of these methods for routine data fitting applications of the type
discussed in Section XI would alone justify expending effort to learn the
techniques.

The application of methods using covariances and least squares conditions
poses a basic problem for the nuclear data community. The methods demand ex-
tensive input information which is often unavailable or can only be estimated
crudely. The information which is provided as output may actually be more
than is really required for applications. People who do reactor calculations
routinely condense nuclear data by averaging and forming group sets. Is it
reasonable to expect them to incorporate covariance information into their
analyses, considering the already considerable complexity of their work even
when detailed error information is not used? By analogy, a laboratory admin-
istrator would demonstrate poor judgment if he designated a large portion of
his budget to the acquisition and maintenance of a costly piece of equipment
which would most likely only be of limited value to the research program. A
detailed error analysis of the type required to generate a realistic covariance
matrix might take longer than the execution of an experiment and the subsequent
data reduction. Some experiments are so complex that the experimenter would
probably be forced to guess at the covariances involved. Might the time not be
better spent doing another experiment? When one views the data base for ap-
plications from a broad perspective - e.g. glancing through data compilation
plots such as those in BNL-325 (Ref. 14) - it is clear that there are still
many deficiencies. Some of these may be important, and significant new infor-
mation could be obtained by using new ideas and techniques in experiments which
address these relatively untouched areas. Good judgment must be exercised.

The problem reduces to the matter of assessing the need for detailed information
versus the effort required to generate 1it. Evaluators are also faced with per-
plexing problems in applying these methods. If the experimenters do not provide
the necessary information to generate covariance matrices, or if the experi-
menters do a poor job, then evaluators are forced to exercise subjective
Jjudgment in order to generate the needed information. The rigor of least-
squares analyses should not mask the fact that subjective judgment is often
required to prepare the input. The term "mechanical evaluation” 1is misleading
since it only applies to part of the evaluation process.

One point 1is apparent. If covariance and least-squares methods are to be
more widely used in nuclear data research, then considerable effort will have
to be devoted to the development of approximation techniques. Experimenters
and evaluators must learn how to identify the important factors in experiments.
The key word is "sensitivity”. For example, if it can be shown that the domi-
nant correlations in a complicated experiment are introduced by only a few
parameters, then the generation of an adequate covariance matrix may be feasible
even for an experiment which generates a large number of data points.

The first proving ground for covariance and least-squares methods should
be in the area of nuclear data standards. Nuclear data researchers are con-
tinuously reminded of the importance of accurate standards to their work.
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1f standard errors are small, then correlations between data sets based

on these standards will be reduced and data evaluation and management will

be less problematic. It seems quite reasonable to embark upon a program

to evaluate the basic standards in a unified way as suggested by Poenitz
(Ref. 8). This would enable us to make the best possible use of the existing
data base, and would indicate more precisely what new standard measure-

ments are needed to achieve realistic accuracy goals, and what accuraciles
will be required for these measurements if they are to make an impact.

Beyond the field of standards, the need for covariance information
must be examined on a case-by-case basis. With a few possible exceptions,
e.g., the dosimetry field, it appears that the need for detailed covariance
information is not well established.
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