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INVESTIGATION OF THE INFLUENCE OF THE
NEUTRON SPECTRUM IN DETERMINATIONS OF
INTEGRAL NEUTRON CROSS-SECTION RATIOS*

by

Donald L. Smith
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ABSTRACT

Ratio measurements are routinely employed in studies of neutron
interaction processes in order to generate new differential
cross-section data or to test existing differential cross-section
information through examination of the corresponding response in
integral neutron spectra. Interpretation of such data requires that
careful attention be given to details of the neutron spectra involved
in these measurements. Two specific tasks are undertaken in the present
investigation: i) Using perturbation theory, a formula is derived which
permits one to relate the ratio measured in a realistic quasi-
monoenergetic spectrum to the desired pure monoenergetic ratio. This
expression involves only the lowest-order moments of the neutron energy
distribution and corresponding parameters which serve to characterize
the energy dependence of the differential cross sections, quantities
which can generally be estimated with reasonable precision from the
uncorrected data or from auxiliary information. ii) Using covariance
methods, a general formalism is developed for calculating the
uncertainty of a measured integral cross-section ratio which involves
an arbitrary neutron spectrum. This formalism is employed to further
examine the conditions which influence the sensitivity of such measured
ratios to details of the neutron spectra and to their uncertainties.
Several numerical examples are presented in this report in order to
illustrate these principles, and some general conclusions are drawn
concerning the development and testing of neutron cross-section data by
means of ratio experiments.

*This work supported by the U.S. Department of Energy, Energy Research
Programs, under contract W-31-109-Eng-38.



I. INTRODUCTION

In experimental neutron nuclear data research the development of
cross section information has conventionally progressed largely along
two lines, namely differential measurements for use in the production
of energy-dependent evaluated cross-section data files (e.g., ENDF/B-V
[1]) and integral measurements for use in testing existing evaluated
differential information. Recently, techniques have been developed and
occasionally applied which enable differential and integral information
to be combined in a unified fashion within the framework of the
evaluation process itself (e.g., Ref. 2 and 3). However, the more
conventional approach continues to be pursued by a majority of
researchers in the field.

Ratio measurements play a very important role in this data
development process. First and foremost, ratio measurements permit
investigators to avoid the difficult issue of absolute neutron fluence
determination by allowing them to reference their measurements to
standards which are presumed to be well known, or at least are well
documented and widely acknowledged. Another appealing feature of ratio
measurements is that the results of such measurements are sometimes
found to be rather insensitive to particular details of the neutron
fields in which these measurements are performed. For example, it is
generally found that monoenergetic measurements are not very sensitive
to properties of the neutron spectrum except in those cases where
pronounced resonance structure is involved. For integral measurements
in neutron spectra with broad energy ranges, the results of ratio
measurements have also been found to be relatively insensitive to
details of the spectrum shape under certain restrictive conditions,
e.g., when the excitation functions for the cross-sections in question
are relatively flat over a wide energy range (such as for U-235 and
Pu-239 fast-neutron fission) or when they exhibit similar threshold
behavior. Although these observations are widely accepted within the
community of nuclear data researchers, it appears that little formal
effort has been expended to investigate the matter in any quantitative
detail.

The present investigation was undertaken to address the following
two specific issues which fall within this category: i) The
relationship between a ratio measured in a realistic
quasi-monoenergetic neutron spectrum and the idealized pure
monoenergetic ratio is derived (in Chapter II). ii) The sensitivity of
a measured integral ratio to the shape and assumed uncertainties of a
neutron spectrum with arbitrary energy dependence is examined (in
Chapter III). Examples are presented in both instances to illustrate
the developed formalism. Conclusions reached from this work are
discussed in Chapter IV.



[I. MONOENERGETIC RATIOS

The importance of monoenergetic ratio data is evident from the
following considerations: Let R(E) = oz(E)/ol(E) be the ratio of two

neutron reaction differential cross sections at a particular energy E,
such that O; represents a standard cross section which is well known as

a function of neutron energy and o, is the cross section for a reaction

which is less well known. The ratio can be measured without having to
determine the absolute neutron fluence, and therefore it can in
practice be determined with much better accuracy through direct
determination than the cross sections themselves. Solving for o,, one

obtains the formula az(E) = R(E)ol(E). Thus, the differential cross
section 02 for the less-well-known reaction can in principle be deduced

from the measured ratio and prior knowledge of the standard cross
section 9,- This, in fact, is the most widely employed procedure in the

field of nuclear data for experimentally determining neutron reaction
cross sections.

However, there is an important complication. While the measurement
of the ratio is not dependent upon absolute fluence (total number of
neutrons involved in the irradiations), there is unavoidable dependence
upon the neutron energy spectrum (i.e., the actual distribution in
energy of the incident neutrons). In fact, when one measures the ratio

in a realistic experiment, what one observes physically is the quantity
R. given by the formula:

(1) Rn = Ga/G1 = ¢(E)02(E)dE /I ¢(E)01(E)dE,

where the neutron spectrum is represented by the continuous function ¢
and the integrals symbolically represent summation over the entire

énergy range spanned by the spectrum. For convenience, we assume that
the spectrua is normalized, i.e., that JO(E)dE = 1.

In an jdealized monoenergetic experiment at energy Eo. the

Spectrum could be represented by the function ¢(E) = 6(E-E0). where &

?s the Dirac delta function. Substitution of this representation of ¢
into Eq. 1 vyields the relationship R = 02(50)/01(E0)- Thus the

measured ratio Rm is equivalent to the idealized monoenergetic ratio,

designated R0 = R(EO) in this circumstance.

For spectra employed in actual "monoenergetic” measurements, the
neutrons do tend to have energies which are confined to the vicinity of
the selected measurement energy E,. Variance in the distribution ¢ is

kept  @s small as possible, consistent with the realities of
€Xperimental procedure, but is never vanishingly small (i.e., the



measurement resolution is finite). A more descriptive label for such
measurements would be "quasi-monoenergetic". Some of the implications
of dispersion in neutron cross section measurements have been addressed
previously [4]. The procedure discussed in this earlier work could be
applied to the analysis of cross-section ratio data. In particular, the
ideal monoenergetic ratio Ro could be "factored” from Eq. 1 as follows:

(2) Rn = RO {J ¢(E)[02(E)/020]dE ) ¢(E)[01(E)/010]dE .

= E ), = dR = o_ . A serious limitation
where 010 ol( 0) 020 OZ(EO) an o= 9 /

of this procedure js that it requires that the shapes of the cross
sections and spectrum as a function of energy be specified in detail so
that the indicated integrals can be computed. Although knowledge of
these shapes can be approximate, and they can be estimated from prior
information (e.g., from evaluated files such as ENDF/B-V [1] for the
cross sections and from models of the neutron production mechanism for
the spectrum [5-7]), this limitation can be rather troublesome and
restrictive in many applications.

The objective here is to find a method for deriving the true
monoenergetic cross-section ratio Ro from the measured ratio Rn through

the application of a correction involving a wminimum number of
parameters which can be estimated, either from prior information or
from the raw data. Let us define the energy Eo as the mean value of the

neutron distribution $(E), that is

(3) E, = J EQ(E)dE.

We then generate Taylor's series expansions for the cross sections o
and a2 relative to Eo. i.e.,

1

n
k
(4) ol(E) & °10 +kflf1k(E—Eo) /kt,

n
- .
(5) az(E) =0, +kf1f2k(E Eo) /ki,

where flk and f2k are derivatives of order k for °1 and 02.

respectively, evaluated at EO' That is f1k = dkol(Eo)/dEk and
fzk = dkoa(Eo)/dEk. This procedure is a reasonable one only if the

variance in the heutron spectrum is considerably smaller than the
energy range over which significant variations are anticipated for the
cross-section excitation functions. In particular, sharp resonances
narrower than the neutron spectrum cannot be tolerated.



Consideration of Eqs. 1, 4 and 5., leads to the expressions

n
(8) G1 S0, +2 flkuk/kl
k=1
n
(7) G2 = %0 +kf1f2kuk/kl.

where
(8) W = OENE-EDE (k- 1,n).

The parameter "k has special meaning in a statistical context. It

represents the k-th central moment of the neutron spectrum. The number
of terms (n) in the expansion which are hecessary in order to provide a
good approximation depends strongly on the nature of the cross sections

and the spectrum, but in most instances a few terms (n < 4) should
suffice.

Much is known about the nature of the various moments . (see

k
Ref. 8). For example, it is evident that "ﬁ = 0 from the definition of

E, in Eq. 3. Furthermore, the moment M, is identified as the variance

of E for the spectrum ¢. It is a measure of the extent or "width" of
the spectrum. Better known is the standard deviation, s (we avoid the
use of the more conventional notation o in order to avoid confusion

With cross section), which is related to H, by the expression H, = 82-

The next two higher-order moments are also used to describe certain

physical properties of the spectrum. The parameter a = M3/83 is

commonly known as the skewness of the neutron distribution ¢, relative
to the mean energy EO. Negative values of imply that the spectrum is

skewed toward lower energies while positive values of « indicate that
it is gkewed toward higher energies. a symmetric distribution is
indicated if « = 0. Most realistic quasi-monoenergetic neutron
distributions encounted in practice are skewed toward lower energies

(@ < 0) [4-7]. Finally, the parameter 8 = u4/s4 is known as the

kurtosis of the distribution (it is always positive). Comparison is
usually made relative to a pure Gaussian distribution for which g = 3
(Mesokurtic). If B > 3 (Leptokurtic), the distribution is more strongly
"peaked” than a Gaussian with similar variance while 8 < 3
(Platykurtic) implies a "flatter" shape than a comparable Gaussian.



The fact that the influence of the spectrum in a
quasi-monoenergetic ratio measurement can be examined in terms of a few
well-defined "statistical” parameters associated with the spectrum is
of considerable practical importance. It is quite reasonable to assume
that an experienced investigator can produce adequate estimates for
these few parameters from a consideration of the neutron production
process in his experiment; however, it is asking much more to expect
him to generate a comprehensive energy-dependent representation ¢(E),
as required for the correction procedure indicated by Eq. 2.

A minor modification of Egqs. 6 and 7 vields the expressions

n
(9) G1 ® 0.5 (1+2 glkuk/kl )
k=2
n
(10) G2 ~ %0 (1 +kfzg2kuk/kl ).

where Bk = flk/o10 and 8o = fzk/oao. Note that only terms for k 2 2

need to be considered in the sums owing to the fact that ”1 = 0. These

terms are normally anticipated to be considerably smaller than unity,
and in many instances they become progressively smaller with increasing
k. From the preceding equations we are led to the following approximate
relationship between R- and RO'

n
(11) R. ~ Ro [ 1 +kfz(g2k-g1k)pk/k! ].

This approximation can become quite precise if sufficient terms are
included in the sum, and if the estimates of the parameters glk' ng
and "k are reasonable. For present purposes it will be assumed that the

approximation is adequate for n = 4. Then, using the definitions given
above, Eq. 11 can be rewritten in the following interesting form:

2 3
- { -
(12) Rm S RO [ 1+ (g22 glz)s /2! + (g23 gls)as /3!

4
+ (g“—gu)ps /4! ].

The first correction term arises as a result of spread in the spectrum
(the variance). The second term contributes if the spectrum is skewed;
however, it vanishes if the spectrum is symmetric with respect to the
mean energy Eo. Finally, the contribution from the third term is

affected by whether the spectrum tends towards a flat shape or is
locally sharply-peaked in the vicinity of Eo.



In order to examine the influence of the cross sections in the
correction process, it is necessary to consider the parameters glk and
Boy - Estimates of these must be provided in order to apply the
formalism. Some suggestions as to how this can be accomplished in
practice are offered in the following paragraphs.

Since it is assumed that the standard cross section % in the
vicinity of EO is adequately known, the major concern is with 02. If
some prior information on the latter is available from previous
experiments or from an evaluation based on data, models, etc., then it
may very well serve this purpose adequately. Otherwise, the necessary
information can in principle be deduced from uncorrected experimental

ratio data acquired at various energies in the vicinity of Eo.

Estimates of the shape of o2 can be deduced by combining these data

with standard cross section values according to the well-known formula
stated above. So, it is evident that there is a price to pay for
acquiring a refined knowledge of the ratio at a particular energy. The
price is that data must be obtained at neighboring energies in order to
permit estimation of the derivatives appearing in the Taylor's series
expansion. Since this can generally be accomplished in a
straightforward manner, there do not appear to exist any insurmountable
obstacles associated with application of the present method.

We shall assume that some information on the energy dependence of

o1 and o2 is available (as discussed above). A reasonable way to

proceed is to represent this information by simple polynomial
expansions of the following form:

n
k
(13) ol(E) = %0 +kfl alk(E—Eo) ,

n K
+ X azk(E—Eo) .

(14) az(E) ~ 0
k=1

20

The parameters a1k and aak can be deduced by least-squares fitting to

the available shape information. Furthermore, from an inspection of

Eqs. (4), (5), (13) and (15) it is evident that these alk and a5

parameters are closely related to the derivatives f1k and f2k which
appear in the preceeding formalism, i.e., f1k = klalk and f2k = k!azk.

Furthermore, = kla,, /o and gak = kla,, /o If we then let

€1k 1k’%10 2k’ %20°

h1k = alk/o10 and h2k = a2k/°20' Eqs. 11 and 12 can be rewritten as

follows:



n
(15) Rn = R0 [1+2Z (hak—hlk)"‘k 1.
k=2
(16) R_ %R [ 1+ (h,_-h )82 + (h._ -h. )as®
m 0 22 12 23 13

4
v (hy,mhy st 1.

It is also useful for some purposes to express the relationship between
Rm and Ro in the form an ROQ. where

n
(17) Q= (1 + Z tk ).
k=2

The significance of the factors tk is obvious from Eq. 17 since the

desired correction factor Q is simply unity plus the sum of these
terms.

Example 1

This example will serve to illustrate the concepts presented in
this chapter. A realistic spectrum shape has been generated using the
procedure described by Smith and Meadows [6]. This represents the

spectrum of 2H(d,n)sﬂe neutrons produced via 3-MeV deuteron bombardment
of a target cell containing deuterium gas. Table 1 provides a discrete
representation of this spectrum in neutron-energy increments of 13-14
keV. The essential parameters of the spectrum (defined in terms of
integrals in the formalism) are computed for this example by the method
29
of finite sums, e.g., Eo = X Ei¢1 = 5.841 MeV. The moments of concern
i=1

in this example are the following: “'2 s 5.851 x 10"3 Mevz {standard

deviation s = 0.0765 MeV), “5 = -2.036 x 10“4 MeV3 (skewness

a = -0.455) and My ™ 9.131 x 1075 Mev? (kurtosis g =~ 2.67). The

spectrum is therefore somewhat "flatter" than a comparable Gaussian,
and it has a low-energy tail (skewed toward lower values of neutron

energy).

For the purposes of this example, the cross sections in the
vicinity of Eo = 5.841 MeV are represented by the following polynomial

parameters (in accordance with Eqgqs. 13 and 14):



o [}

1 2
%0 = 200 millibarn 020 = 100 millibarn
a,, = 100 millibarn MeV-1 a21 = -50 millibarn Mev-1
a;, = 500 millibarn MeV 2 a,, = -250 millibarn Mev
a 4 = 2500 millibarn Mev > 8,5 = 1250 millibarn Mev™3
a,, = 12500 millibarn Mev a,, = -6250 millibarn Mev d

For this choice, each of the terms in Eqs. 13 and 14 contributes no
more than 10% to the cross section variations with energy (relative to
the values at Eo) over the range of the spectrum ¢. Plots of °1’ o. and

2
¢ are provided in Fig. 1. From this figure it is evident that the
energy point EO = 5.841 MeV falls near a "resonance" minimum for o1 and
near a "resonance” maximum for 0,. Furthermore, the variation with

energy of these cross sections (over the spectrum range) is moderate,
thereby insuring applicability of the present procedure.

The results of the analysis based on these input data are as

follows: R0 = 0.5, Q = 0.9593 [ based on t2 = -0.02926 (22.9%), t3 = 0

and t, ® 0.01141 (21.1%) ] and R. %~ 0.4800. Note that even though the

spectrum is skewed, t3 is zero because of the specific nature of the
cross sections which results in h23 = h13' The product ROQ differs from
Rn by only 0.07%; however, it should be noted that in this particular

simulation exercise the moments of ¢ and the derivatives of o, and o,
are precisely determined from the assumed hypothetical representations

of these energy dependent quantities. The spectrum and cross-gsection
shapes appearing in this example are typical of what might be
encountered in experiments involving fluctuating cross sections (e.g.,
in the resolved resonance region). The correction here amounts to gome
4%, certainly a non-negligible effect for many purposes.
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III. INTEGRAL RATIOS

When the neutron spectrum employed in a measurement is relatively
broad, e.g., a reactor spectrum, one resulting from natural
radioactivity or one produced at an accelerator (see Ref. 9), the
procedures discussed in Chapter II are no longer relevant.
Nevertheless, the extent to which the interpretation of results from
such a measurement depends upon detailed knowledge of the spectrum
continues to be a matter of critical importance. At present, probably
only one neutron spectrum is sufficiently reproducible and
well-characterized to be considered a true "benchmark” field, namely

that one arising from the spontaneous fission of 252Cf (10}. In

general, the level of quantitative understanding of the other neutron
environments which are routinely employed for neutron nuclear data
development and testing purposes is limited to an extent where serious
difficulty is routinely encountered in the analysis of data. This is a
problem with which the nuclear data community must cope for the
foreseeable future.

In this chapter, the influence of uncertainties in broad-spectrum
representations on the interpretation of integral cross-section ratio
data will be examined using covariance methods [11]. The objective is
to establish a formalism which can be used to analyze quantitatively
the impact of integral ratio data in either the development or testing
of differential cross section representations for specific reactions.

Eq. 1 forms the basis for a treatment of this problem. However, in
the present chapter continuous representations of the spectrum and
differential cross-section functions are abandoned in favor of group
representations, as is the normal procedure for most reactor physics
analyses. Identical group structures are used to represent the spectrum
and two cross sections. The number of groups is indicated by the
integer n. The physical quantities are represented by (1,n) row vectors

)'

1y Topnr e, O

1'%12 9

o, = (o1

117" "1n

o, = (o .0

21'%22°**%qr 2%, ),

¢ = (¢1'¢2""'¢i""'¢n)'

where the bar over a quantity denotes a vector and "+ indicates
transposition (in this case from (n,1) column vectors).

Using this matrix notation, Eq. 1 can be written in the form

(18) R = 6,/6 = (§" 0,)/(¢" o,).
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The subscript "m" has been excluded for a reason. In this chapter we
choose to consider R as a quantity which is calculated from the
indicated physical parameters, in contrast with R. which we consider to

represent a true measured value to be compared with R. We also choose
to explicitly emphasize the functional nature of R, i.e.,

R = R(al.aa.i). Then, let x represent the combined array of these
physical quantities, namely a (3n,1) column vector. It can be

conveniently written here in the transpose fornm, §+ = (5;,5;,$+). Then,
R = R(x).

The problem is therefore to develop an expression for the

uncertainty in R in terms of the uncertainty in x (that is in the
spectrum and in the differential cross sections as well). The rule of
error propagation [11] is applicable in this context. Here, it assumes
the form

+ - -

(19) E§=i" vV T,

where ER is the uncertainty R, \-Ix 1s.the (3n,3n) covariance matrix

applicable to x, and T is the (3n,1) transformation matrix , or, as it
is more commonly designated, the sensitivity matrix. Vx is generally

partitioned into submatrices, and the manner in which this is done
depends upon those physical assumptions which are made concerning the
correlations reflected in this matrix. For the present treatment, it
will be assumed that no correlations exist between the spectrum
uncertainties and those related to the differential cross sections.
This is an assumption which appears to be applicable, at least to a
good approximation, in a wide variety of important applied problems. In
general, it should not be assumed that there are no correlations
between the uncertainties for the two differential cross sections

appearing in the ratio. Thus, we can express Vx in the the form

<)
o

where "0" denotes zero off-diagonal submatrices. The sensitivity matrix

T must then be correspondingly partitioned. Thus,

_ T
(21) T = 9
s
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Combination of Egs. (19)-(21) vields the expression

Y 0
2 -t =t o
(22) ER = { Tb. T¢ ] )
0 V¢

Performance of some routine matrix algebra leads to the result

2 2 2 -+ = = =+ - =
(23) ER = ERo + ER¢ = (To Vb To) + (T¢ V@ T¢).

The two terms in Eq. 23 represent distinct sources of error from a
physical point of view, and this point is emphasized by the labels
selected (i.e., the error due uncertainties in the cross sections and
that due to uncertainties in the spectrum). Each term will be examined
in turn below.

First, consider ER¢' The (n,1) matrix T¢ consists of partial

derivatives (aR/a¢i) for i = 1,n. Therefore,

2 n n
(24) Eeo 151 151 (3R/2¢, ) Voij (3R/2%).

where V ii is a typical element of the spectrum covariance matrix V¢.

$ij

For present purposes it is not of concern whether the spectrum 6
is normalized. For interest, however, we digress here briefly to
consider the case of a spectrum representation which by definition is

always normalized. In particular, if we define ¥, by the relationship
n

P = 6/:. where ¢ = X ¢1. then the ¥ is clearly always normalized.
i=1

Furthermore, its covariance matrix V? possesses the interesting

property that the elements sum to exactly zero by rows or columns,

n n
ie., Zz v =0and £ V = 0 [12].
i=1 *ij =1 *ij

For convenience, we choose to write Eq. 18 in the more explicit
form
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n n
(25) R = 6,/6, = (X ¢, 0, V/(Z¢ o . ).
2771 N T2 VR 2 9y oy

Computation of the partial derivatives appearing in T, is then quite

$
straightforward. The result is

(26) aR/a¢1 = (61021-62011)/612 for { = 1,n.

From Eqs. 24 and 26 we are able to derjve the general result

2 non 4
(27) Bp,* - [151 351 (6,0,,-G,0, ) Voi (6,9,,-6,0,) 176"

While Eq. 27 provides a general algorithm for numerical
computation of the error in R which can be attributed directly to the
uncertainties in the spectrum, it is not a very useful relationship for
acquiring an understanding of the error propagation mechanism. For this
purpose, it is instructive to consider a special case, namely that
where the spectrum uncertainties are uncorrelated from group to group.

by 2

= E is the
Then, V¢ is diagonal and we may write v¢ij E¢i 61j where i
error in the group flux ¢1 and 61j =1 if i=j and 0 if i#j (the

Kronecker Delta Function). Under these conditions

n
2 2 2 4
(28) ER¢ = [ifl (GIOZi—Gzoli) E¢i ]/G1 .

At this point we turn to consideration of three specific examples:

Example 2

Suppose that the two differential cross sections differ by only a

constant factor ¥, ji.e., 0., =¥ o for i=1,n. Then G, = ¥ Gl (or
2i 1i 2

ive = - = i= = 0. In this
equivalently, R ¥), Glo21 Gzoli 0 for i=1,n and ER¢

simple example it is obvious that R is a constant which is independent

of the spectrum and is therefore insensitive to the spectrum
uncertainties.

Example 3
In this example, arbitrary shapes are permitted for the
differential cross sections, but we do require that G2 = Gl’ namely

that each has about the same spectrum average cross section for the
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spectrum in question (R =~ 1). Then, GloZI—Gzoli S G1 (021—011). and

n
2 2 2 2
(29) ER¢ = [Ifl (oai—oli) E¢i ]/G1 .

In order to demonstrate the significance of Eq. 29, we introduce some
numerical values. An 11-group spectrum and cross-section representation
is employed for simplicity. Two versions of 02 are considered. For the

first (02 set A), the threshold behavior is not too widely different

from o however for the second (o2 set B), the threshold is

11
considerably higher. These hypothetical cross section sets are formed
so that 62 = G1 as required. For present purposes it is assumed that

the uncorrelated uncertainty in each ¢i is 10%. Table 2 1lists the

relevant numerical values for this problem. It is evident from Eq. 29
that the calculation of ER¢ for o, set A differs from that involving

li)2 These effectively serve

to “"weight” the error contributions from the various groups of the
spectrum in the determination of ER¢' The influence of the

9, set B only through the factors (021-0

spectrum—-group error E¢1 on ER¢ is enhanced whenever the corresponding
difference between o1 and o2 becomes large, particularly if the group

is strongly represented in the spectrum. If the uncertainties in the
spectrum vary widely from group to group on a percentage basis (not a
consideration in the present example), then this additional factor has
to be taken into consideration. In the present problem, the errors ER¢

(expressed in percent) which result from the information in Table 2
are: 2.4% (o2 set A) and 5.7% (o2 set B). The error is much larger for

02 set B because the shape differs much more drastically from °1 than

does that for a2 set A,

Example 4

We shall now consider the same hypothetical data set as was
treated in Example 3 (see Table 2), with the exception that
non-vanishing correlations for the spectrum errors will be assumed.
Again, both o2 set A and o2 set B are included.

First let us suppose that the uncertainties in the ¢i are
100%-correlated. The only way that this is possible is for each ¢3 to
be expressed as p ‘1 where n is the common factor which must possess
all the error (in other words, each tl is without error). From Eq. 18,

it is evident that the factor n cancels in the general expression for
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R. As a consequence, no uncertainty in R is introduced by the
uncertainty in the spectrum under these conditions (since the error is
entirely attributed to the factor 7). The solution to our problem is
therefore trivial in the limit of complete correlation, i.e., there is
no error in R due to the spectrum uncertainty.

In order to develop a non-trivial example, we have to assume that
the off-diagonal correlations are other than either zero or unity. Let
us assume then that all the off-diagonal coefficients of the

correlation matrix corresponding to V¢ are equal to 0.5 (50%

correlation). Eq. 27 is required for this analysis. Since the
associated computations are rather lengthy, a computer program has been
written to expedite the task. The results of the calculation are: 1.7%
(a2 set A) and 4.0% (02 set B). As might be anticipated, these errors

fall between zero for full correlation and the values obtained in
Example 3 for no correlation.

It is tempting to generalize that the ratio error attributed to
spectrum uncertainty decreases as the overall correlation increases.
While this seems to be the case for the examples presented above, it
would be imprudent to imply that this is always the case. In
particular, we have not examined what occurs when anti-correlation
(negative correlation coefficients) is encountered. We will pursue this
matter no further here, but will simply suggest that care always be
taken to perform the detailed calculations which are required before
reaching any specific conclusions.

We will now turn our attention to the first term in Eq. 23.
Proceeding formally in much the same fashion as was done above for the
second term, we conclude that

2
(30) ERo = f 3*: (aR/aoi) Vaij (aR/aoj).
No explicit indication is provided as to the specific nature and range
of the indices "i" and "j". In fact, the summations must extend over
both differential cross-section sets o1 and 02. In order to make

progress toward understanding the manner in which the cross-section
uncertainties contribute to the error in R, and the role of the
spectrum in this context, we choose here to make the assumption that

the errors in o1 and 02 are uncorrelated. This assumption is not

essential for a general application of the theory, but is merely a
matter of convenience for explanatory purposes. Thus,

2 2 2
(31) Eo - Eol * Eoz ’

with
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n n
2
(32) ER01 = .Z .z (aR/aoli) Volij (aR/aolj),
i=1 j=1
2 n n
(33) ERoa = 151 jf] (6R/602i) Vozij (aR/aozj)'

V01 and Voa are submatrices of Vo situated along the diagonal. Zeros

occupy the remaining locations in 66. From Eq. 25 we are led to the

formulas

2
(34) aR/aa11 (—62/61 ) ¢i

(35) aR/aoai (1/61) ¢i'

Consideration of Egs. 32 through 35 yields the expressions

(36) E. .2 = (6.%/6.% : oz 6. V_ ... 4.,
Ro1l 2 1 i=1 j=1 i o1ij Vj

2 n n
(1/6,%) =z £ ¢
i=1 j=1

2
(37) ERoz

i Vo215 ¥y

No loss in generality results if we limit further consideration to
only one of these expressions. Thus, we focus attention on the effects
of error in o, as indicated by Eq. 36. Proceeding as we did above, we

2
V&lij = Eoli 61j where Eali is the

error in the group cross section % and 61J is the previously-defined

Kronecker Delta Function. Then we obtain

first neglect correlations. Thus,

2 2,4
(38) ERol = (G2 /G1 )

LU I~
©
tn

This formula tells us what we wish to know about the nature of this
term. As one is likely to suspect on the basis of intuition, the error
in the ratio from this source comes from those portions of the energy
range where the spectrum intensity is greatest, and where the errors in

o1 are also significant. The square of the group flux ¢1 serves as a

weighting factor to determine the influence of the cross section
uncertainty for the group in question. Therefore, even though the
uncertainties in the spectrum have no influence here, the effective
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uncertainty contribution represented by this term is certainly
influenced indirectly by the detailed shape of the spectrum.

To illustrate the concepts we now consider two hypothetical
examples. For each of these we turn to the spectrum and cross sections
employed in the analysis appearing in Example 3 (see Table 2).

Example 5
Here we assume that each group cross section value oli has an
error of 10%, and that these are uncorrelated. Errors in ¢ and o, are

ignored for present purposes, so Eq. 38 is applicable for the
computations. The hypothetical data utilized in the present
calculations is similar to that used in previous examples. The
essential parameters are reproduced in Table 3. The result of the
analysis is an error of 4.1%. Table 3 also provides insight concerning
the origins of this error. Most of the error contribution comes from
Groups 1-6, as is evident from the entries under the column labelled
¢.° E

i oli’

Example 6

Although our primary intent is not to examine the effects of cross
section errors on the ratio, it is nevertheless interesting to examine
how the computed error in the ratio changes if the errors in the cross
sections are assumed to be correlated.

First, if the errors in the o11 are 100% correlated, it is evident

from an argument similar to the one used in Example 4 that the
corresponding ratio error is exactly 10%.

Partial correlation must now be considered in order to provide a
non-trivial example. Once again, we will assume 50% correlation. The
formula applicable to this analysis is Eq. 36, and a computer was used
to complete the required calculations. The result is an error of 7.6%,
smaller than that which is obtained in the case of full correlation but
larger than the error determined when no correlation is included.

Example 7

We conclude this chapter by considering an example which utilizes
actual data from the literature. For this purpose, we refer to the work
of Watanabe et al. [13]. These authors have compared measured and
calculated fission cross-section ratios for several fissionable
isotopes in the fast-neutron spectrum generated by bombarding a thick
Be-metal target with 7-MeV deuterons. Spectrum-average cross sections
were computed using the method described in Ref. 14. Evaluated fission
cross sections from ENDF/B-V [1] and two distinct representations of
the neutron spectrum (obtained from Refs. 15 and 16, respectively) were
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employed in this analysis. Some results are presented in Table 4.
Comparison is made there between differences in the calculated integral
ratios for the two distinct spectrum representations. Included in the
table are ratios between fission processes having similar
energy-differential behavior (e.g, N-N and T-T) and quite different
energy-differential behavior (T-N). It is quite evident that the
effects of differences in the spectrum representations (i.e., spectrum
uncertainty) are more pronounced when the cross sections involved in
the ratios differ considerably in their energy-differential behavior.
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IV. CONCLUSIONS

The present investigation has produced methods for dealing with
some important practical issues associated with the analysis of
experimental and calculated reaction cross section ratios (e.g., the
matter of assessing the utility of ratio data in evaluation
applications).

For experiments involving quasi-monoenergetic neutron spectra, it
has been shown by means of a perturbation analysis that measured ratio
data can be converted to approximate point ("true” monoenergetic)
values provided that estimates of the low-order moments of the spectrum
and of certain parameters describing the energy dependence of the
differential cross sections for the two reactions involved are
available. Generally, the information required need not be very
precisely known, and it can generally be acquired from a survey of the
raw data and/or from prior knowledge derived from the literature.

When broad-energy spectra are involved, the impact of
uncertainties in the spectral representations on the computation of
integral cross section ratios can be readily analyzed by using
covariance methods. With these it is possible to examine quantitatively
the intuitively apparent result that spectrum-uncertainty effects
become more acute when the energy-dependent behaviors of the
differential cross sections differ considerably. The detail nature of
the spectrum is also seen to be an important consideration in
determining how differential cross section uncertainties are propagated
through to the ratio error. In particular, large cross section errors
have a significant effect whenever they correspond to an energy range
which is strongly represented in the spectrum.
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Table 1:

a

i E1
1 5.6117
2 5.631
3 5.6844
4 5.658
5 5.671
6 5.685
7 5.699
8 5.712
9 5.726
10 5.739
11 5.758
12 5.766
13 5.780
14 5.793
15 5.807

Representation

COoOO0CO0COO0OODQOCOOCOOOOO

a Neutron energy in MeV.

b Relative neutron intensity (unnormalized spectrum).
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of the neutron spectrum

"

.02
.04
.07
.11
.14
.18
.23
.26
.32
.37
.42
.48
.55
.61
.68

18
17
18
19
20
21
22
23
24
25
26
a7
28
29

Qoo g o

from Example 1

a
Ei

.821
.834
.848
.861
.875
.888
.902
.915
.929
.943
.956
.970
.983
.997

Qo000 OoO0COOCOORROOO

o

.76
.83
.92
.00
.99
.94
.85
.73
.62
.50
.38
.26
.13
.02
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Table 2: Numerical information associated with Example 3

A B
. a b b 2 b 2
i ¢ % i (0,;7015) i (03579, )
1 0.17405  28.9 4.913  5.754(2)C 0 8.352(2)
2 0.20679 539.0  100.957 1.919(5) 0 2.905(5)
3 0.19710 523.0  400.745 1.495(4) 0 2.735(5)
4 0.16002 547.0  716.718 2.880(4) 0 2.992(5)
5  0.12928 536.0  924.797 1.512(5) 1.625 2.856(5)
6  0.06915 650.0 1094.343 1.974(5) 278.214  1.382(5)
7 0.01724  935.0 1146.363 4.467(4)  2340.118  1.974(6)
8  0.01670  992.0 1154.070 2.627(4)  5746.289  2.260(7)
9  0.01563 997.0 1154.070 2.467(4)  9451.476 7.148(7)
10 0.00902 982.0 1130.950 2.219(4) 12077.608 1.231(8)
11 0.00501 987.0 1098.196 1.236(4) 14170.713 1.738(s)

a Spectrum is normalized, i.e. I ¢i =1,

b All cross sections given in consistent arbitrary units.

° 5.754(2) = 5.754 x 10°.
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Table 3: Numerical information associated with Example 8

a 2 b b 2 2
i ® ¢ %11 Esii ¥ Eopy
1 0.17405  3.029(-2)° 28.9 2.89 0.253
2 0.20879  4.276(-2) 539.0 53.9 124.2
3  0.19710  3.885(-2) 523.0 52.3 106.3
4 0.16002  2.561(-2)  547.0  54.7 76.62
5 0.12928  1.671(-2) 536.0 53.6 48.02
6  0.06915  4.782(-3)  650.0  65.0 20.20
7  0.01724  2.972(-4)  935.0  93.5 2.598
8  0.01670  2.789(-4)  992.0  99.2 2.744
9  0.01563  2.443(-4)  997.0  99.7 2.428
10  0.00902  8.136(-5) 982.0  98.2 0.785
11 0.00501  2.510(-5)  987.0  98.7 0.245

a Spectrum is normalized, i.e. X ¢1 =1,

b All cross sections and errors given in consistent arbitrary units.

€ 3.029(-2) = 3.029 x 102,
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Table 4: Numerical information associated with Example 7

Calculated Ratios
Fission Ratio Typea Spectrum lb Spectrum 2° Difference (%)

239y, 235, N-N 1.496 1.497 < 0.1
232, . 238, T-T 0.2609 0.2590 0.7
238, 235, T-N 0.3844 0.3763 2.1

2N - non-threshold process. T = threshold process.

b Be(d,n) spectrum measured by time of flight with a scintillation
detector as described in Ref. 15.

¢ Be(d,n) spectrum measured by time of flight using a fission detector
as described in Ref. 18.
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FIGURE CAPTION

Figure 1: Plot of ol(E—Eo), °2(E_EO) and ¢(E—E0) as described in

Chapter II, Example 1.
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