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NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in the field of
microscopic nuclear data. The primary objective is the dissemination of information in the
comprehensive form required for nuclear technology applications. This Series is devoted to:
a) measured microscopic nuclear parameters, §experimenta.l techniques and facilities
employed in measurements, c) the analysis, correlation and interpretation of nuclear data,
and d) the evaluation of nuclear data. Contributions to this Series are reviewed to assure
technical competence and, unless otherwise stated, the contents can be formally referenced.
This Series does not supplant formal journal publication, but it does provide the more
extensive information required for technological applications (e.g., tabulated numerical
data) in a timely manner.
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RESONANCE EFFECTS
IN NEUTRON SCATTERING LENGTHS*
by
J. E. Lynnt

Abstract

The nature of neutron scattering lengths is described and the nuclear effects
giving rise to their variation is discussed. Some examples of the shortcomings of the
available nuclear data base, particularly for heavy nuclei, are given. Methods are
presented for improving this data base, in particular for obtainipg the energy
variation of the complex coherent scattering length from long to sub—Angstrom wave
lengths from the available sources of slow neutron cross section data. Examples of
this information are given for several of the rare earth nuclides. Some examples of
the effect of resonances in neutron reflection and diffraction are discussed. This
report documents a seminar given at Argonne National Laboratory in March 1989.
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RESONANCE EFFECTS IN NEUTRON SCATTERING LENGTHS

J.E.Lynn*

Argonne National Laboratory
Argonne, Illinois 60439

1. Introduction

To a nuclear physicist surveying the opportunities now being opened up in
the field of neutron scattering techniques for condensed matter research,
particularly by the intense spallation neutron sources that can operate well into
the sub-Angstrdm region, it is clear that the readily accessible nuclear data
base for this work is far from satisfactory. It is my purpose in this seminar
to describe the current situation in the data base as I see it, and in particular
to discuss the neutron coherent scattering lengths of the heavy nuclides, which
often have strong energy dependences and imaginary components owing to nuclear
resonances in their cross-sections.

The solid-state physicist primarily wishes to regard the nuclei off which
his neutrons scatter as tiny impenetrable spheres, the Fermi pseudo-potentials,
which are only characterized by their effective "radius", the scattering length.
The fact that they are much more than that is already apparent from surveying
the neutron scattering properties of the very lighest nuclides. First of all,
we have the strong isotope variation; examples are

'H 3eon = -1.87 fm (-0.187 10" cm)

H Qe = 4.45 fm
(a denotes free atom scattering length). The fact that the proton scattering
length is negative also shows the inadequacy of the particle picture. Then there
is the spin difference. Defining the channel spin s as the resultant of the
nucleus and neutron spins, we have the examples;

H 4,y = 5.42 fm

a,0 = =-23.75 fm

H 3y, = 6.34 fm
gy, = 0.65 fm

Thir?ly, we have the possibility of sizeable imaginary components. The lightest
nuclide in this class is He, with a bound atom coherent scattering length of

bcoh = 5.73 - 11.48 fm

‘Argonne Fellow: permanent address; UKAEA, Harwell, Oxon OX1l ORA, England



All these features are consequences of nuclear excitation levels. Because the
neutron energy range of interest to the condensed matter scientist is so tiny
compared to the energy scale of the nuclear levels in these examples, there is
no energy variation of any significance, but the isotope and spin variations
are of major use.

The data base seems to be quite sound for many of the light nuclides. For
heavier nuclides, however, there appear to be many gaps and anomalies, even
before we begin to consider the consequences of the much more closely spaced
nuclear levels in these systems. As an example of the cause for concern about
the available data base, I show a table of the data for samarium and its isotopes
as it could well appear in the kind of compilation easily available to the
neutron scatterer at the present time (this Table is only slightly disguised from
an actual one).

Table 1. State of the Nuclear Data Base for heavy nuclides

Typical case: Samarium and its isotopes

Isotope a (fm) 2 Q) Comment

™“Sm 0.71+0.2 1.86 From measurement!
0.0+0.05 1.30 From measurement?
-0.12+0.04 1.27 From measurement?®
4.2+0.3 From compilation®
1.4 1.80 From compilation®
2.9%0.06 1.30 Meas.? (Imag.comp.)
-1.5 1.80 Comp.* (Imag.comp.)

*“Sm 4.434.0 From compilation®

*’Sm 14.0+3.0 From compilation®

144Sm 33.0%6.0 From compilation®

14°Sm -24.0-i11.0 1.80 From compilation®

-18.7%0.28 1.80 From measurement*
1*Sm 14.0£3.0 From compilation*
2Sm -5.0+0.6 From measuremant’
1%Sm 9.25%£1.0 From compilation*

8.0+1.0 From measurement’

We see from this Table that, firstly, the entries in commonly used compilations
do not necessarily agree, even qualitatively, with measured and well-documented
values. Secondly, there are a number of nuclides for which directly measured
scattering lengths do not exist, yet values are given in compilations; in the
compilations referred to above, no argument or evidence is advanced for the



numbers quoted. There appear to be almost 60 elements and isotopes for which
only this kind of value is available.

Thirdly, there is a sign discrepancy for the imaginary components of the
scattering length of the natural element. There has been a degree of
arbitrariness in the literature over the choice of sign for the imaginary part;
subsequently in this report, I employ the negative sign that comes naturally from
the deduction of tlre scattering length from nuclear reaction theory (see also
Sears® on this point).

Finally, there is a wave-length variation in the scattering for natural
samarium, which is due to a strong resonance in '"Sm at low energy. In
compilations, this wave-length variation is seldom made very obvious, even though
in a few cases, such as natural samarium and its resonant isotope, a series of
measurements from long wavelength to just below 1& have been made™*. It is my
main purpose in this report to show how existing cross-section data can be used
to give better scattering length data, including especially the systematic energy
variation and phase component that are important for very many heavy nuclides.

2. Theory of neutron scattering lengths

The expansion in spherical polar coordinates of a plane wave travelling
in the z direction with velocity v is, ignoring neutron and target spin effects,

exp(ikz) = ké;\?éo 1" [I,(kr) - Oi(kr)]Y¥w(9,0) (1)

Here, k is the neutron wave number, Y,(€,p) are spherical harmonics and I, O
are combinations of spherical bessel and neumann functions and have the form of
incoming and outgoing waves. Ignoring the centre-of-mass factor for the heavy
nuclei considered in this report k has the numerical value

k = 0.0021968 JE
in units of 10" cm, where E is the neutron energy in electron-volts (eV).
For 2 = 0, I, = exp(-ikr), O, = exp(ikr), so we can write
exp(ikz) = (Jn/kr/v)[2sin(kr)/Jbr + Tey i"(I, - 0)Yu(®,0)]  (2)
For kr<l, i=1, I - O is negligible, so the effect of a nuclear potential
confined to a region with radius R satisfying the first condition on these waves
of higher angular momentum is unimportant for the scattering of the plane wave.
For a hard sphere of radius R, the wave-function has a node at R and is
zero within the sphere. Hence the form of the wave-function of the impinging
Projectile plus scattering is
¥ « sin[k(r-R)]/kr (3)

This can be written in the form of incoming and outgoing waves as

¥ « exp(ikR)[exp(-ikr) - exp(-2ikR)exp(ikr)] (4)



The amplitude of the scattered wave [x (sink(r-R) - sinkr)] is approximately
proportional to R, showing that this is the scattering length for a hard sphere.
More accurately, the proportionality of the scattered wave amplitude can be
written as [1 - exp(-2ikR)].

The physical situation described above is that in which the only channel
is the elastic one. Here I define the concept of a channel. A channel is the
distinct separatiorr of a reacting nuclear system into two entities, one a
residual (or target) nucleus, the other an ejectile (or projectile), each in a
particular state of excitation and spin. Neutron cross-sections can be expressed
in terms of a collision matrix U, which is the set of amplitudes of the outgoing
wave-functions produced in the exit channels as a result of a neutron reaction
with a target nucleus. For many purposes the most significant of these amplitudes
is that for elastic scattering, from which can be deduced the elastic scattering
cross-section, the total cross-section and the absorption cross-section (the sum
of all cross-sections into non-elastic channels), and I shall 1limit our
discussion henceforth to this one amplitude, which I shall denote by U.

In a plane wave the amplitude of the outgoing wave-function in the elastic
channel relative to that of the incoming wave is unity. The form of the
scattering wave-function is therefore proportional to (1-U). In the example above
U is just exp(-2ikR). For a potential well, rather than a rigid sphere, the
quantity R is replaced by an apparent "radius" R’, which has the form illustrated
in Fig.l; this is actually the phase shift (divided by k) for the elastic
scattering. This quantity can be visualised as the - \.

linear extrapolation of the sine wave outside the
well to its node. This is illustrated in Fig.2 in
which a resonance condition is achieved when the
wave function inside the well contains exactly an
odd number of quarter wavelengths and an infinite
scattering length ensues. At an energy slightly
below resonance the extrapolated value of the node
(scattering length) is small, or even negative,
while above resonance it is positive and much
larger than the well radius. As a function of
projectile energy the apparent radius for a
specific potential well will have the form shown
in Fig.3.

/)

SCATTERING LENGTH (fm)

Translated into nuclear physics, in which the
nuclear radius is approximately proportional to the
cube root of the nuclear mass number A, the phase .
shift has the mass number dependence shown in
Fig.4, the strong swings occurring as the potential
well radius passes through the resonance condition
for very low neutron energy, and it is found that
nuclear scattering lengths do have a very rough and
ready mass number dependence of this kind. Again ‘ _
translated to nuclei, the resonance effects z;s“::d ilu'ssc:fu':n:ft];:ﬁ:? azefluln_“;f:
apparent in Fig.3 would have spacing on a scale of  broken line is for an impenetrable
several MeV. sphare.
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Figure 2.Wave function at resonance (full curve), below
resonance (dot-dash) and above resonance (dotted). The
node of the wave outside the well radius (or its extra-
polation inside) is the scattering length.

Figure 3. Scattering length as function of energy.
At non-zero energy the swing is curtailed.
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Figure 4,Scattering length as function of mass number.



Real nuclei are much more complex in their reactions with particles than
can be represented by a simple potential well. The complexity is illustrated in
Fig.5, which shows the energy levels of the compound nucleus formed by adding
a neutron to a target nucleus. The binding energy of a neutron in the compound
nucleus is several MeV. At this excitation energy, reached by adding a very slow
neutron to the target, the level spacing is several tens of keV for very light
nuclides, a few keV for
medium mass nuclides, and

a few eV or less for very = E

heavy nuclides. It is these =

levels <close to zero n Z%/m 5
SRR = 2! | et

neutron energy, the == [Binding Enersy

resonances and the weakly Target ot
bound states, that have a
major influence on the
scattering length. The
reason why there is still
an apparent potential well
effect in the overall
pattern of scattering
lengths is that the
compound nucleus levels Y...
retain some 'memory’ of the

potentialresonances,which

then exerts a long range

influence on the ZEeYO .Figure 5. Nuclear energy levels of compound system. Inset shows
energy properties of the enlargement near neutron binding energy with resulting cross-section.
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scattering.

For s-wave neutron interaction, the detailed form of the scattered wave
is

. j+1/2
g2 - iJn T a1 [1 - U,] exp(ikr)¢.Ye(9,9) ()
kr/v s=|s-1/2]

Here I have introduced the concept of the channel spin s, the total spin formed
from the neutron spin o(=%) and the spin of the target nucleus j; the normalised
channel spin wave-function thus formed is denoted by ¢,. When this is compared
with the usual form for the elastic scattering wave-function

scat Jj+1/2 .
U - s-h-haif' exp(ikr)¢t, /r (6)
the relation
f, = i(l - U)/2k (7

is obtained.

The usefulness of this expression lies in the fact that a full formal
understanding of the collision matrix element can be obtained from the R-matrix
nuclear reaction theory of Wigner and Eisenbud® (see also Lane and Thomas®). For
thermal neutron reactions with nearly all nuclides except the actinides, elastic
scattering is accompanied by radiative capture and alpha-emission channels with
partial widths that are very small compared with the resonance spacing. For such



reactions an excellent approximation that can be derived fr
is the reduced R-matrix formulation. In this,
scattering can be expressed as

om the full theory
the collision function for elastic

U= e-Zika[l - ikaﬂ]']‘[l + ikaR] (8)

where the quantity a is a channel radius (which is usually chosen to equal either
the potential well radius of the nucleus or the potential Scattering length R’).
The reduced R-function for this one-channel case is

2

YA(n)

R =z .
ATEy - E - Ty /2 (9)

Here, the Ej) are the formal nuclear energy levels of the (compound) system, with
reduced neutron width amplitude ), and absorption width I'\,, which is the sum
of partial widths of all reaction widths of the compound nucleus level A. The
functions U and R are implicitly labelled by the channel spin s, as are the
nuclear levels A.

If the nucleus can be represented by a simple potential well, the levels
A are just those causing the fluctuations R’ apparent in Fig.3 (or 2). If there
are no compound nucleus levels (resonances) with E\ close to E, the effect of
these potential well levels can be incorporated into the effective channel radius
a, which then equals the potential scattering length R’. The quantity kaR is then
negligible, and since ka<l for low neutron energy, the scattering amplitude f
is approximately equal to -a, which is the common usage for most neutron
scattering work. If compound nucleus levels are significant but distant, so that
R is effectively real and hardly changes over the energy range of interest, the
relation is £ = -a(l-R). ' :

These relations are for a single channel spin. In general a and R will vary
for different isotopes and channel spins. For the general case of a multi-isotope
element with non-zero-spin isotopes, the coherent scattering length (for free
nuclei) has the well-known form

acoh.ol - -ziwi z:gl,lfl,s (10)

where w, is the fractional abundance of the isotope i in the element and g,, is
the spin-weight factor (2s + 1)/[2(2j, + 1)] for channel spin s. The total
scattering cross-section is

0 = (/KT wigia|l - UL’ (11)
the absorption cross-section is

o = (n/KDE wga(l - U] (12)
and the total cross-section is

or = 2(n/k*)Z w8 (1 - Rel,,) (13)

For many of the heavy nuclides, a single resonance level dominates the
energy variation of the collision function for given channel spin. I give here



the single level approximation for the scattering amplitude, with an important
extension to include the milder energy dependent effects from more distant
resonance terms. This is obtained from eqs.7,8,9. The expression for the
scattering amplitude f,,, to second order in a,

a7y oyl (Ex+By-E) + kaly(1-R.)]
(Exthy-E) + T2/6

£ = -[a(l-R,)] + 2ka’S,(1-Ry) +

+i{[asex + ka*(1-R,,)? - kas_ ] + a’Y)\(n)z[r)\/z + 2ka(E)‘+AX'E)(1-Rex)]} (14)
(Ey+0)-E)* + T)\/4

the labels i,s being implicit. Here, the quantities R,, S.. are measures of the
real and imaginary contributions of other levels; when these are some distance
from the level A the distant level quantities can be described as simple
polynomials:

R, = A, + B(E - E;) + C.(E - Eg)* + ... . (15)
Sy = A, + B(E - E,)) + C(E - Eo)* + ... (16)

where E, is some approximately central point in the energy range of interest.
The width I\ is the total resonance width of the most significant resonance A;
it is the sum of a neutron width I\, (= 2kay\.’, to second order in ka and
distant- level quantities) and the absorption width D, . The quantity A\ is a
level shift that can usually be neglected at the very low neutron energies
considered in this paper.

The generalised single level formula of eq.l4 can be used to analyze cross-
section and scattering length data by least square fitting to obtain an
assessment of the coherent scattering length data from neutron energy close to
zero up to approximately 0.5 eV. An alternative way of treating the potential
well effects of Figs.1-3 is to incorporate their long-range effects empirically
in the constant A, of eq.ll, and to use the convential nuclear potential radius
as the channel radius a:

a = 1.16A" + 0.6 fm. (17)

The pivot energy E, is also chosen in advance. With these constraints the
parameters E\, Yim’, Thays 4, Bes..., 4, By, ... for each isotope and channel spin
are then determined from the data. The free atom nuclear coherent scattering
lengths can then be determined from eqs.l0 and 6. Because there is generally very
much more detailed cross-section data available on a given nuclide than data on
scattering lengths, it is possible to learn a great deal about the latter by this
procedure.

3. Examples of deduced scattering lengths

The main example that I shall use to demonstrate the possibility of
extraction of the energy dependent, complex scattering length from cross-section
data is the case of samarium and its isotopes, also discussed in the introduction
and Table 1.



The total cross-section of natural samarium'® is shown in Fig.6. The strong
resonance at approximately 0.1 eV is known (from measurements on separated
isotopes) to belong to the target '“*Sm (present at 13.9% in the natural element),
and the spin s of this resonance has been ascertained by polarised neutron and
target techniques! to be s = 4 ( the target spin j = 7/2). The resonance
parameters have been rather well determined". The scattering cross-section as
a function of energy across
the resonance has been
measured". The refitting of E— — N
all these data gives a set of o 1
resonance parameters rather
close to those found in the 10
literature together with
parameters for the slowly
varying contribution of the
other levels. From these, the
coherent scattering length
behaviour of “'Sm is
calculated; it is shown as the
broken curve in Fig.7.
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The data points shown

in Fig.7 have not been used 10° 3 E

in the fitting. They are o 3

measurements of the real part C N

of the neutron scattering 3'1d3.10:, m— HI(L)" —t— "'1'0_, “10,
149

length of Sm, made by Neutron energy (eV)

interferometry techniques®,
and are not generally found
in compilations. It is clear
that the broken curve represents
the data rather well but not
optimally so. A refit of the
collision function parameters to
include these data leads to the
calculated full curve, which is
obviously better, but not
drastically so. It is clear that
it is possible to calculate the
energy dependence of coherent
scattering lengths quite
reliably fromcross-sectiondata
of this quality.

Figure 6. The neutron total cross-section of natural samarium.

If we now use the deduced
parameters of the «collision
function of Sm with the
measured long wave-length
coherent scattering lengths of - : . L 3 L L
12.1%%8m and the natural element oot Y ace

. Neutron energy (eV)
we can determine the energy
dependent scattering length of Figure 7. Real part of the coherent scattering length of "‘Sm.
natural Sm and the abundance- cyrves and data are explained in the text.
weighted average of all the

(Coherent scatterlng length)  (fm)




isotopes except 149, 152, and 154. The coherent scattering length of the natural
element is shown as the full curve of Fig.8. This can be compared with some
energy dependent measurements? which have not been used in the fitting procedure.
It is clear that the agreement is very good, again giving us confidence in our
procedure.

The analysis does not give us confidence in the overall set of numbers in
Table 1, however. THe weighted average of the scattering lengths of the isotopes
for which measurements do not seem to be available is determined in our fitting
as 8.5 fm. The value computed from the entries of Table 1 is 19 fm. The
discrepancy is wide, and a large part of it comes from the extraordinarily high
value given in ref.5 for 'Sm. 1f this were really so large, it would have to be
due to a very strong bound level in the “*Sm + n system, and no evidence in the
form of a very high total scattering or capture cross-section is available to
support this hypothesis.

Phil Seeger and I have carried out analysis of this kind on the available
cross-section data of all the elements of the rare earth series that have obvious
resonance effects'. In general we have taken our analysis and computation of
coherent scattering lengths up to 0.5 eV (wavelength 0.41 ). The calculated,
and recommended, energy dependence for all the isotopes and some natural elements
that display resonance behaviour is shown in Fig.9. We plan to make a similar
systematic study of other nuclides at a later date.

4. Some effects of resomance behaviour in scattering lengths.
4.1. Small angle scattering and total reflection

The striking features of the coherent scattering lengths in the examples
shown in Fig.9 are of course the large imaginary component and the very large
real component above the resonance energy. The former gives rise to strong
absorption; this severely limits the penetration depth of neutroms, but also
gives a phase variation that can yield additional information from scattering
measurements.

WTn has a strong resonance at 1.46 eV. From the resonance parameters the
scattering length can be calculated. Its energy behaviour above 1 eV is shown
in Fig.10. Experiments have been carried out to detect the anomalous total
scattering caused by this. The calculated scattering from a plane surface of
indium at various neutron energies is shown in Fig.l1l. There is a striking
variation in the angle of quasi-critical-scattering with a maximum reached at
about 1.6 eV, and this is greater than at any energy above 0.1 eV

Resonance critical scattering is probably observable at energies well above
1 eV for several materials. An example 1is shown for "Sm, which has 2
particularly strong resonance at 8 eV, in Fig.l2.

An interesting example of the possible application of resonance scattering
is being explored by Hjelm, Seeger and Thiagaryan'*. They have suggested the use
of the strong contrast provided by the large change in coherent scattering length
over a small range of neutron energy (e.g. 63 fm from 0.07 eV to 0.11 eV in "“'Sm)
to locate the position of the metallic atom in large metallo-organic molecules,
using small angle scattering diffractometers on white neutron pulsed sources.
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4.2. Bragg reflection . . ' _

Despite the strong absorption, strong
Bragg reflections can be obtained at neutron
energies close to -resonance. One of tbe
strongest resonances known at low energies 1is
found in the cross-section of ™Pu at 1.04 eV.
A calculated Bragg reflection from a single
crystal of Pu0, is shown in Fig.13. This is the
[12,4,0] reflection at the energy 1.04 eV. It
ijs calculated for a crystal thickness of

Re(Coherant scaltering length) (fm)

A i N .

2.10* atomic layers, by using the Darwin 1 e
multiple scattering formalism originally Neulron ensrgy (s¥)
developed for X-ray diffraction. The angle- Figure 8. Real part of the coherent
integrated line strength over the energy range scattering length of natural samarium.

LE&) 230

Curves and data are explained in the text.

0.9 eV to 1.2 eV is shown in Fig.l4. For this
thickness of crystal the reflection strength
qualitatively follows the resonance scattering cross-section. For increasing
crystal thickness the wings rise, the centre remaining almost constant owing to
primary extinction and absorption, until for very great thickness there is little
evidence of the resonance.

These general features suggest that resonance scattering could be used to
explore the structure of surface layers of intermediate thickness, although not
as low as a few mono-layers. It should also be remembered that, for nuclides with
odd numbers of protons, neutrons or both the resonance scattering is sensitive
to the relative spin polarisation of the neutron beam and the target nucleus,
and could therefore be useful in studies of magnetic materials at low
temperatures.

4.3. Powder diffraction

Because of the strong absorption resonance scattering would not appear at
first sight to be a useful effect in powder diffraction studies. Nevertheless,
in refinement analyses of the Reitveld kind it is obviously important to include
as well as possible the wave-length variation of the scattering length, and the
changing ratio of the imaginary to real components offers the opportunity to gain
some phase information.

Even relatively weak resonances complicate the analysis of a powder
pattern. An example, due to Goldstone and Lawson'’, is shown in Fig.l1l5; this is
NpD,;;, which, at room temperature has a face-centred cubic cell, with the
deuterium atoms occupying tetrahedral and octohedral sites in different
proportions. The absorption dips in the overall scattering (coherent and
incoherent) due to the resonances at 0.49 eV and 1.32 eV are very strong. Greater
detail for the resonance region is shown in Fig.16. In this some evidence of
diffraction lines is to be found in the resonance minimum. Indeed, these, as well
as the lines above the resonance (in energy), may be surprisingly strong relative
to the lines at longer wavelengths below the resonance.

A preliminary analysis indicates that the relative magnitude of these
groups of lines certainly cannot be explained on the assumption of a constant

11
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coherent scattering length for neptunium, or even with the inclusion of the
resonance variation if the phonon frequency for the deuterium is assumed to be
the same as that for Np. The calculated scattering amplitude for the latter
assumption is shown for the three different classes of the order of reflection
in Fig.1l7. The largest amplitude, in general, is for reflection order satisfying
the relation h + k + 1 = 4n where n is an integer, and the next largest is that
for h + k + 1 = 2n + 1. The corresponding energy dependence of the angle-
integrated line stréngth is shown in Fig.18. It is clear that the contribution
of deuterium is too high too allow the resonance effect for the h + k + 1 = 4n
reflections to be very significant. Inelastic scattering measurements' have
revealed, however, that very high frequency phonons reside on the deuterium,
which will give it a small Debye-Waller factor, especially at the high energies
corresponding to the resonance region.

References

" Rauch H and Tuppinger D (1983) Zeit.Phys.A322, 427
Engle D W and Koetzle T F (1984) Act.Cryst. A40, 99
Sikka (1969) Act.Cryst. A25, 621
Mughabghab S F (1984) Neutron Cross Sections Vol.l Pt.B (Academic, Orlando)
Sears (1986) in Methods of Experimental Physics 23A, 521
Word R E and Werner S A (1982) Phys.Rev. B26, 4190
Koehler W C and Wollan E O (1953) Phys.Rev. 91, 597
Wigner E P and Eisenbud L (1947) Phys.Rev.72,129
Lane A M and Thomas R G (1958) Rev.Mod.Phys.30,257
. Sailor V L, Landon H H and Foote H L (1954) Phys.Rev.96,1014
Marshak H, Postma H, Sailor V L, Shore F J and Reynolds C A (1962)
Phys.Rev.128,1287 '
12. Marshak H and Sailor V (1958) Phys.Rev.109,1219
13. Brockhouse B N (1953) Can.J.Phys. 31, 432
14. Lynn J E and Seeger P A 1989 acc. for publ.in At.Data & Nuc.Data Tables
15. Hjelm R, Seeger P A and Thiyagar jan P, private communication
16. Batigun C M and Brugger R M (1988) J.App.Cryst. 21, 54
17. Goldstone J A, Lawson A C, Cort B and Ward J W 1988 unpublished
18. Goldstone J A, Vorderwisch P, Cort B, Lawson A C and Ward J W 1988 to be
published

POV PWN P

-o .

19



