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The Nuclear Data and Measurements Series presents results of
studies in the field of microscopic nuclear data. The primary
objective is the dissemination of information in the comprehensive
form required for nuclear technology applications. This Series is
devoted to: .aﬂ measured microscopic nuclear parameters, b
experimental techniques and facilities employed in measurements, c
the analysis, correlation and interpretation of nuclear data, and d
the evaluation of nuclear data. Contributions to this Series are
reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication, but it does provide the more extensive
information required for technological applications (e.g., tabulated
numerical data) in a timely manner.
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A SUGGESTED PROCEDURE FOR RESOLVING AN ANOMALY IN
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by
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Argonne National Laboratory
9700 South Cass Avenue
Argonne, Iléixois 60439
U.S.A.

ABSTRACT

Modern nuclear-data evaluation methodology is based largely on
statistical inference, with the least-squares technique being chosen
most often to generate best estimates for physical quantities and
their uncertainties. It has been observed that those least-squares
evaluations which employ covariance matrices based on absolute errors
that are derived directly from the reported experimental data often
tend to produce results which appear to be too low. This anomaly has
come to be known as "Peelle’s Pertinent Puzzle" (PPP) because the
validity of certain evaluations afflicted in this manner has been
called into question by R.V. Peelle. The anomaly, as originally posed
by Peelle through a specific example, is discussed briefly in this
report, and a procedure for resolving it is suggested. The method
involves employing data uncertainties which are derived from errors
expressed in percent. These percent errors are used, in conjunction
with reasonable a priori estimates for the quantities to be evaluated
(rather than the individual experimental values), to derive ‘the
covariance matrices which are required for applications of the
least- squares procedure. This approach appears to lead to more
rational weighting of the experimental data and, thus, to more
realistic evaluated results than are obtained when the errors are
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ABSTRACT
(continued from the preceding page)

based on the actual data. The procedure is very straightforward when
only one parameter must be estimated. However, for those evaluation
exercises involving more than one parameter, this technique demands
that a priori estimates be provided at the outset for all of the
parameters in question. Then, the least-squares method is applied
iteratively to produce a sequence of sets of estimated values which
are anticipated to conyergenge toward a particular set of parameters
which one then designates as the "best" evaluated results from the
exercise. It is found that convergence usually occurs very rapidly
vhen the a priori estimates approximate the final solution reasonably
well. In fact, the procedure is observed to be quite robust in that
convergence is not too difficult to achieve even when the a priori
estimates aren’t very good. Some examples are given in this report to
illustrate the problem and to demonstrate the approach suggested here
for its resolution. Some general implications for the practice of
nuclear data evaluation are also discussed.
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1. SOME COMMENTS ON THE LEAST- SQUARES NETHOD

Data evaluation is comprised of specific procedures by which the
available information, usually experimental in nature but sometimes
consisting of both experimental and theoretical components, is
employed to generate recommended "best" values for those particular
parameters being evaluated. In modern practice, such procedures are
quite often based on statistical inference. The least-squares method
is the statistical approach most commonly used in contemporary nuclear
data evaluation for inferring best values for . parameters from the
available information [Smi88b]. Various computer codes based on this
method have been developed for use in routine statistical data
evaluation applications [e.g., Poe81 and Smi82b]. For this pragmatic
reason, there is a strong motivation to continue to utilize the
least- square technique in spite of some troublesome complications
which are frequently encountered in dealing with real data.

Use of the least-squares method is quite well justified on the
basis of fundamental mathematical theory. It is beneficial to
elaborate on this point before we proceed with a discussion of the
specific issue of this report. There are two distinct philosophical
approaches to the science of statistics, although both share many
technical features in common. Classical statisticians adhere to the
belief that all statistics is based on probability theory and that, in
turn, probability provides a formal mathematical model for dealing
with those phenomena in nature which reflect the consequences of the
relative frequency of occurrence of certain well-defined events.
Therefore, classical statistics is deeply rooted in set theory. On the
other hand, Bayesian statisticians have adopted a more liberal point
of view. Even though the mathematical formalism is generally
identical, the concept of relative frequency is expanded in the
Bayesian framework to include consideration of relative rational
degrees of plausibility for those hypotheses which are suggested to
explain physical phenomena. Bayes’ theorem [e.g., Smi88a] plays a
vital role in both of these approaches, but its interpretation and
applications are much more severely restricted in the classical
tradition. For this reason, Bayesian statistics offers scientists more
opportunities for the application of statistical inference, but with
higher levels of associated risk. Fortunately, the least-squares
method emerges as a viable approach in both classical and Bayesian
statistics. We will now review the procedure briefly and explore its
origins and justification from both of these statistical points of
view.

The 1least-squares problem can be formulated in a number of

different ways [e.g., Fro86, Smi81, Man81, Mar71l and Zeh70]. Vithout
any loss of genmerality, we shall consider only the following one: Let

11



Yexp be a vector of n experimental values, corresponding to a set of

observables Y. Associated with yexp is a covariance matrix V which

represents the data uncertainties. For the present, we will defer
consideration of exactly how V should be determined. Given this
information, we wish to deduce the best values for a set of m
parameters S (the evaluated results). A functional relationship
between the observables Y and the parameters S must be postulated,
i.e., calculated values are given by Yeale = Y(S), in order to apply

the method. Many physical problems permit the assumption of a linear
regression model, i.e., the existence of a linear relationship between
the observables Y and the parameters S. One then specifies a matrix A
(often called the design matrix) such that Yeale = AS- If such a

relationship does not exist naturally, it can be forced through
approximation by introducing a priori estimates for the parameters and
then using Taylor series expansions to obtain linear relationships
which involve small increments of both the observables and the
parameters. This step can lead to some complications, but let us not
be distracted here by this distinct and somewhat irrelevant issue. In
classical statistics, application of the least-squares method amounts
to satisfying the following condition:

-1 ..
U= Gexp Yeald) " Gexp Yeale) = minimum, (1)

or, equivalently, VQ = 0, where the symbol " V" signifies the
gradient operator with respect to the parameter set S and the symbol

" denotes matrix transposition. { is known as a quadratic form. If
the quantities Yex and V are independent of S, and Yealc = AS, then

Eq. (1) is satisfied by the expression
+
§ = VoA vyexp' (2)

Furthermore, the covariance matrix for the solution S is given by the
formula

Vg = (Al (3)

where ¥ = V' 1. A detailed derivation of this result can be found in a
report by Smith [Smi81]. By this approach we are able to obtain all
that we care to know, namely, best-estimate parameters S and their
uncertainties, as defined by Vs. However, if Y is not linearly related

to S, or if V depends upon S, we are confronted with a problem because

Egs. (2) and (3) no longer provide a rigorous solution to the
condition expressed by Eq. (1). In the present report it will be
assumed that Y and S are linearly related, but not necessarily that V

gs independent of S. We will return to a discussion of this issue in
ection 3.

12



If ve take S, as given by Eq. (2), and substitute it into the
expression for Q given in Eq. (1), then that value of Q which is

obtained is usually referred to as 12. It is interpreted as a specific
value of the chi-square statistic which is commonly employed in
chi- square tests for the statistical significance of hypotheses gi.e.,
interpretations of the data). Since the expected value of the

chi- square statistic is <12> = f = (n-m), the consistency of the data

Yexp® the appropriateness of the linear regression model (as embodied

in the design matrix A), and the quality of the solution S can be
tested quantitatively by comparing the value of 12 thus obtained with

f. If xz/f > 1 the consistency is not good. Ve should then proceed as
follows: i) Attempt to identify and correct discrepant data wherever
that is feasible. ii) Selectively increase certain errors in the data,
where good judgment indicates that it is warranted. Only rarely should
data be rejected. iii) As a last resort, enhance all the elements of

the solution covariance matrix Vg by the factor xz/f. 1f xz/f <1, no

further action is required. In other words, the evaluated data are
considered to be consistent. Strictly speaking, such a statistical

interpretation of X2 is proper only if the data Yexp are normally

distributed. We shall return to this point later in the present
section.

It is important to realize that the procedure based on Eq. (1) is
simply postulated in classical statistics. This least-squares method
is but one of several such ad hoc procedures which have been suggested
for use in statistical inference, i.e., for the generation of
"estimators" that are used to derive best values of certain physical
parameters from the available information [e.g., Mar71l, Smi81 and
Zeh70]. The relative merits of these various procedures are usually
judged by two general criteria: i) how practical they are to use and
ii) the extent to which they produce estimators that exhibit certain
properties which have been deemed to be mathematically desirable.
Therefore, let us consider what additional desirable features
least- squares estimators do exhibit. One feels intuitively that good
estimators should make optimal use of all the available experimental
data, that is they should be sufficient estimators. In this regard, we
note that the expressions for S and VS do appear to utilize all the

relevant input data. However, it is not easy to prove that a statistic
is sufficient [Zeh70]. Another desirable feature for estimators is
consistency. Consistent estimators will produce numerical values which
converge toward the "true value" for large data sets. This is the case
for least-squares estimators. Then, there is the matter of bias. An
estimator is an unbiased estimator if the expected value of that
estimator equals the true value of the parameter being estimated. So
long as we adhere to linear regression models, least-squares

13



estimators are unbiased, quite independent of the underlying
distributions [Zeh70]. The Gauss-Markov theorem, as amended by Aitker
for correlated data [Ait57], states that, within the framework of =
linear regression model, as described above, the estimator for S which
results from an application of the least-squares condition will be of
minimum variance. The validity of this theorem does not depend upon
the data being normally distributed! However, the assumption that the
data actually are normally distributed leads to an additional benefit,
namely, that one is rigorously justified in using the chi-square
statistic, as indicated above, for significance testing. So, from the
point of view of classical statistics, the least-squares method is
amply supported as a procedure for data evaluation because 1t
satisfies several worthy criteria for generating good estimators.

WVhat about the Bayesian point of view? The approach is much
different from the classical one, but we will now show that the end
result turns out to be essentially the same. The ideas are thoroughly
discussed in papers by Froehner [e.g., Fro86] and Jaynes ie.g:, Jay68,
Jay73, Jay76, Jay78, Jay801, so the present description of this fairly
complex issue is kept fairly brief.

In Bayesian parameter estimation, mean values and an associated
covariance matrix for the set of parameters in question are calculated
directly from a probability function. In principle, this function
incorporates all the possible information about these parameters that
can be known. Actually, we are required to determine only the first
and second moments of this distribution to meet our needs. The
derivation of an expression for this probability function formally
starts with a consideration of Bayes’ theorem. Ve can express Bayes
theorem in terms of the notation which has already been developed in
this report. Ve tacitly assume that the parameters represented by §
are continuous rather than discrete. The formula we obtain from Bayes
theorem is

P(S1¥exp) = L(TexplSIP(S) / [J L(yeyplS*)p(S°)dS"]. (4)

Here, p(S|yexp) is the a posteriori probability demsity function for

the parameters S. It represents our knowledge of S after acquisition
of the data set Yexp* The function p(S) is the a priori probability

function. It represents our knowledge of S before obtaining the data
set Yoxp: L(yexp|S) is called the likelihood. It represents the

probability (or likelihood) that parameter set S would produce data
set Yexp® The factor [...] in the denominator of Eq. (4) is just a

normalization constant which insures that
J P(S]yegp)dS = 1. (5)

The range of integration in Eqs. (4) and (5) is over all values of the

14



parameters (represented by either S’ or §, as the case may be) that
are allowed by the physical nature of the problem.

Let Si be a typical parameter from the set S. The Bayesian
estimate for this parameter is given by the expression

<8, >= I Sip(Slyexp)dS, (6)

while the elements of the covariance matrix VS are given by

vSij = [ (<8 > - 8.) (< Sj > - Sj)p(Slyexp)dS. (7)

It appears that nothing could be simpler than applying this approach,
if only we knew the exact form of p(Slyexp)!

Neglecting the normalization constant (it can always be deduced

from numerical integration if required), we see that Eq. (4) takes the
form

D(S1Texp) * LT yplS)P(S).- (8)

Ve will assume, for the sake of the present discussion, that the only
information available to us is the data set Yexp and its associated

uncertainties. The function p(S) must then be "non-informative", i.e.,
p(S) = 1 over the range of integration for S. So, under these
assumptions we have

P(S|¥exp) * L(¥exp!S)- (9)

Jaynes recognized that Shannon’s princi le of maximum entropy from
information theory [e.g., Sha48 and SVW49] could be used to provide an
explicit expression for the likelihood function L(yeXPIS). The correct

form of L certainly depends on the exact nature of the information
available for the estimation procedure. Here it is assumed that a
collection of data Yexp and its associated covariance matrix V are

iven, nothing more or nothing less. Under these conditions, it is
ound that

L(yexp,V|S) « exp[- (1/2)4]
- exp[- (1/2) eny Yeare) ¥ Uexp Yeard)- (10)

The quadratic form, { = (yexp_ ycalc)+v-1(yexp— ycalc)’ which appears

in the argument for the exponential function of BEq. (10), is positive
so long as V is positive definite, which it always should be if it is

15



properly selected to represent physical uncertainties GS88] .
Consequently, L is maximized when { is a minimum. Note also that we
have now included V explicitly as an argument of L to emphasize the
point that the form of L, as given by Eq. (10), is valid only when the
available information consists exclusively of Yexp and V.

Ve could choose to proceed with the calculations indicated by
Eqs. (6) and (7), using Eq. (10) along with an appropriate
normalization constant to represent p(S|yexp). Vhen is this a

practical approach? If Y and S are linearly related and V 1is
independent of S, then the a posteriori probability distribution will
be truly normal and the Bayesian solutions for S and VS can be

determined easily. They are given by Eqs. (2) and (3), and are
therefore entirely consistent with the least-squares results.
Othervise, the required calculations could be prodigious, even when
handled numerically using a high-speed computer. This is particularly
true if the data array Yexp and parameter set S are both large. The

Bayesian approach would be very unappealing in such situations,
perhaps impossible. However, there is an approximation which often is
made to alleviate the situation. It assumes that an acceptable
solution for S is the one with the greatest likelihood, i.e., the one
which maximizes L. This solution is called the most probable or
maximum- likelihood solution, and it is conceptually quite different
from the true Bayesian solution which must be obtained by evaluating
expected values according to Eqs. (6) and (7). Referring to
Egs. (1) and (10), it is evident that the approach resulting from this
maximum- likelihood approximation is entirely equivalent to the
least- square method since it requires § to be a minimum. This
approximation will lead to results which can be quite different
numerically from the Bayesian values when the a posteriori
distribution is significantly different from a normal distribution,
e.g., if it is strongly skewed. Our understanding of the particular
anomaly which is described in Section 2 will ultimately evolve from a
thorough appreciation of this important point.

Summarizing, we see that in classical statistics the
least- squares method is simply a postulated procedure for generating
parameter estimates which possess several desirable properties.
However, it is also evident that this method can be derived more
fundamentally from an application of Bayes’ theorem and the principle
of maximum entropy, provided that, when forced to do so, we are able
to justify resorting to the maximum-likelihood approach as an
approximation to the explicit calculation of expected values. In view
of these various considerations, it is easy to see why evaluators are
reluctant to abandon the least- squares method, in spite of some of the
difficulties which it can pose in practical applicationms.
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2. THE ANONALY KNOVN AS "PEELLE’S PERTINENT PUZZLE"

R.W. Peelle, in an informally distributed memorandum, has
suggested that the manner in which least-squares methodology is
conventionally applied to data evaluation sometimes tends to produce
rather strange results &Pee87]. He questioned whether they ought to be
believed if they contradict intuition. This issue has come to be known
as Peelle’s Pertinent Puzzle (PPP). Here is the puzzle as expressed in
Peelle’s own words from the original memorandum:

"Suppose we resolve to combine ezperimental values using weighted
least-squares adjusiment with the wetght matriz taken to be the
inverse of the full variance-covariance matriz of the input data. This
approach 1s encouraged to achieve the minimum-variance result and to
obtain an output variance-covariance metriz that properly reflects the
input data base.”

"Fe are required to obtain the weighted average of two
ezperimental results for the same physical quantity. The first result
18 1.5, and the second 1.0. The full covariance matriz of these data
ts believed to be the sum of three components. The first component is
fully correlated with staendard error 20} of each respective value. The
second and third components are independent of the first and of each
other, and correspond to 10} uncertainiies in each ezperimental
resslt.”

"The result is a weighted average of about 0.87 = 0.23, a value
outside the range of the input values! Under what conditions is this
the reasonable result that we sought to achieve by use of an advanced
‘data reduction technique?”

"One’s first reaction ts to blame the non-intuitive result on the
discrepant nature of the input data. This is not the reason, because
the whole input data covariance matriz can be scaled up without
changing its ’shape’ until the data are consistent. The input data are
indeed strange, but a similar if muted effect would occur if a
less-odd example of this type were offered.”

"My own first reaction to this puzzle was to have confidence in
the method, and imagine ezperiments that would yield such @ data
covariance matriz and for which the odd-looking result is reasonable.”

"However, what if I try to justify such @ covarience matriz for
an ezperiment wn which two effectively independent 107, activation
experiments are performed using the same foil for which the mass is
known to 2047 For that case we feel stirongly that the best answer is
1.25, with an uncertainiy greater than 200 that depends on how any
discrepancy is resolved in the activation part of the ezperiment. If
that feeling is correct, evaluators need o very clear way to know that
this combination problem should not be analyzed using the technique
described in the first paragraphs above.”
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"My ouwn effort to ezplain the weighted least-squares evaluation
technique do not yet indicate the level of data reduction at which one
must apply the full least-squares data combination to obiain
unambiguous resulis.”

The issue that Peelle raised had not gone unnoticed by the
community of nuclear data evaluators. It was certainly observed as
early as 1978 by Perey [Per78]. Perey showed that in averaging two
partially correlated data values one can expect the evaluated result
to fall below either data value if the elements of the data covariance
matrix V satisfy one or other of the relationships Vi <V or

Vog < Vi (note that V,, = V12). This is indeed quite proper if one

accepts the given absolute values of the covariance matrix elements as
being correct. The same point was later echoed by W. Mannhart [Man81].

This result follows from the estimator formula obtained by an
application of the basic formalism, as given by Mannhart in Eq. (8),
Appendix 2 of his report. This formula is reproduced here for
convenience:

y = [(v22‘v12)y1 + (vll’vlz)Y2]/[(v11'v12) + (V22-V12)], (11)

vhere, y is the evaluated value, ¥y and y, are the data values, and
v11’ Vio = Voq and Voq are the elements of the data covariance matrix.

If V11 < V12 or V22 < V12, then negative weighting factors will

obviously result, with a depressing effect on the evaluated value y.
If the data are uncorrelated, i.e., if V12 = V21 = 0, then one can

easily show that Eq. (11) takes the form:

y = [0V Dyg + (g Dyl /(v 7+ Vo ). (12)

Since V11 > 0 and V22 > 0, y will always fall between ¥y and Yo for
uncorrelated data. If V22 > V11, then y will lie closer to Yy i.e.,
y; vill be more heavily weighted than ¥o- The opposite will be true if

Our first step in examining PPP was to see if we could reproduce
Peelle’s result, 0.87 + 0.23. In trying to do this we had to overcome
a modest problem. But, first, let us list the formulas which we found
to be useful in this analysis. They correspond, respectively, to
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Eqs. (114), (183) and (184) from a report by Smith [Smi81]:

2 2 2
2= (Y)W + 2007 9) (g ¥)Vyg + (¥97Y) Voo, (13)
2 N-l,0 -2 o -2 1, -1
B % = (-0 ") (B 2+ By Y- 2008, TRy Y, (14)
-2 1, -1 -2 -1, -1
y = [(By ° - Cpoky "By )yy + (By ° - CioBy" "By 7)y,)/ (15)
[, 2- ¢,.B B, Yy + (8,2- ¢ B 1B, 1))
1 1281 "By 2 1281 By )l
where E.2 =V,,, BE.2 =V Vip = Vo, = CoB.E,. The elements of the

1 112 72 22?
correlation matrix C satisfy the properties C11 = 022 =1 and

C12 = C21. Furthermore, V11’ V12 = V21 and V22 are defined as the
elements of VW, the inverse of the covariance matrix V (i.e., W = V'l).

Ve proceed now to consider PPP. Qur initial interpretation of
this particular problem was that there exists a 20% fully-correlated
error and two distinct 10% random error components for each of the two
data points. Furthermore, we understood that the elements of the
covariance matrix V were to be calculated by applying these percent
errors to the measured values, i.e., that

2 2 2 2

Vg = By% = (0.1y))° + (0.1y,)% + (0.2y))%, (16)

Vig = Voy = CoBiEy = (0.2y,)(0.2y,), (17)
2 2 2 2

Voo = By® = (0.1y,)* + (0.1y,)* + (0.2y,)°, (18)

where y; = 1.5 and yo = 1.0.

Vith these values, an analysis based on Egs. (13)-(15) yielded the
result: y = 1.00, Ey = 0.24 and X2 = 3.33. Ve were very puzzled by the

fact that this result is quite different from the one reported by
Peelle. Subsequently, we were able to resolve this discrepancy by
assuming that actually there was only one random error component of
10% for each data point, in addition to the 20% fully-correlated
error, in the problem that Peelle had originally envisioned. Thus,
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Eqs. (16) - (18) ought to be replaced by the following expressions:

2 2 2
Vig = Bf7 = (0.1y)" + (0.2y)%, (19)
Vig = Vo; = CoE By = (0.2y,)(0.2y,), (20)
2 2 2
Voo = By = (0.1y5)° + (0.2y,)". (21)

Vith these values, we obtained the result: y = 0.88, Ey = 0.22 and
12 = 5.88. This is in good agreement with what Peelle reports. This
minor ambiguity in the precise interpretation of Peelle’s problem does
not detract in any way from the underlying issue associated with PPP,
so it should not be a cause for concern.

Peelle makes no mention of the chi-square statistic (xz) in his
memorandum; however, this important parameter ought to be considered
in order to quantify our confidence in the results. Two data points
" (n = 2) averaged to produce a single result (m = 1) corresponds to one

statistical degree of freedom (f = n-m = 1). The expected value of 12
is f for consistent, normally distributed data (i.e., < 12 >/f = 1).

Since the values x2 = 3.33 or 5.88 (depending on the particular
interpretation of the problem) are both signi%icantly larger than
unity, this implies that we should have a rather low degree of
confidence in the evaluated results. 0Only by enhancing the input

errors E, and E, by the factor ()_rz/:f)l/2 or, alternatively, by
increasing Ey by the same factor, is it possible to achieve a

satisfactory level of confidence in the evaluated result. 0f course,
as Peelle correctly points out, this will not alter the magnitude of
the evaluated parameter.

Ve believe that Peelle indeed has raised a very fundamental issue
which is of crucial importance to the practice of nuclear data
evaluation. Since it is obviously undesirable to abandon the process
of data evaluation by the least- squares method, we are of the opinion
that the resolution of this problem must involve determination of a
viable alternative method for deriving the elements of those
covariance matrices which are required for 1least-squares parameter
estimation. Our suggestion for achieving this objective is thoroughly
discussed in Section 3.
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3. A SUGGESTED PROCEDURE FOR DEALING VITH THE PUZZLE

Ve have observed that the difficulty discussed in Section 2 (for
convenience we will continue to refer to it as "PPP", even in a more
general context) can be alleviated if the required experimental data
covariance matrix elements which are needed for least-squares analysis
are computed from percent errors and best-estimate values for those
parameters being evaluated, rather than directly from the experimental
data as is usually done (e.g., in Peelle’s example). Since these
best-estimate values are not known in advance, in most instances it is
necessary to provide reasonable a priori determinations of their
magnitudes and then iterate the various solution steps until
acceptable convergence is achieved. In this section we will discuss
the reasoning which led us to make this suggestion.

As discussed in an earlier report by Smith [Smi82a], most
experimental determinations of nuclear quantities (e.g., cross
sections) involve extensive manipulations of raw data. Final
experimental results are derived through a composition of the actual
measured quantities and (usually) a number of computed corrections.
0ften these procedures can be formally represented by analytical
models in which the experimental quantities y; are expressed as

products of several primary measured or calculated factors. This is
expressed by the formula

A

y. = IF. o (22)
17,5 il

The various factors FiA will have associated uncertainties which may

be correlated between the various data points (index "i"), but usually
are not correlated between the various experimental attributes which
enter into the product (index "A"). These attributes tend to be
independent because of their distinct physical natures (e.g., count
rates, detector calibrations, radiation absorption or scattering
parameters, etc.). Consequently, overall uncertainties for the
quantities y; can be derived in terms of the uncertainties for the

individual factors FiA by means of error-propagation, according to the
well-known formula

A
(Byy/y;)" = B (Bpyy/Fy)° (23)

riy/Fi)

The essential point is that fractional errors (or equivalent percent
errors) in the individual multiplicative components of Eq. (22) are
propagated via addition in quadrature according to Eq. (23) to
generate overall fractional errors for the derived results. Therefore,
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it seems quite reasonable to consider fractional errors (or equivalent
percent errors) instead of absolute errors in the data as a means for
expressing the confidence we have in the experimental values with
which we must deal in performing an evaluation. When comparing various
data sets which purport to result from measurements of the same
physical quantities, it is suggested that one should refer to percent
errors and their correlations in deciding how to weight the given
values for evaluation purposes.

If we choose to work with percent errors in the data, and also to
preserve the least- squares evaluation method (with its requirement for
an input data covariance matrix) then the obvious choice is to compute
the matrix elements by multiplying a priori estimated values for the
parameters by the corresponding fractional errors (equivalent to the
percent errors). If, instead, we try to compute these quantities using
percent errors and actual experimental values, we are likely to end up
with inappropriate weighting factors for the data. Peelle has
demonstrated that the consequences can be quite significant if there
are strong correlations and inconsistencies in the data [Pee87]. One
can illustrate rather simply the fallacy of utilizing experimental
data to calculate weighting factors directly. Consider the following
situation: Suppose that we make a series of independent observations
of counts-per-minute (N) recorded by a particular radiation detector
(under conditions of stochastic equilibrium). Let us suppose that the
values we obtain are 83, 102, 99, 115, 107, ... etc. The N rule for
statistical errors is a well-known result from Poisson statistics
[e.g., Mar71 and Zeh70], so we might be tempted to assume that the
corresponding errors in our observations are 9.11, 10.1, 9.95, 10.7,
10.3, ... etc. Application of the least-squares method would suggest
that we then weight our data by the factors 0.0120, 0.00980, 0.0101,
0.00870, 0.00935, ... etc., respectively. These weightings are quite
distinct, so the implication that this should be done is nonsense. In
our quest to obtain a best estimate for N, we are justified in
treating each of these values with equal confidence because we
understand, intuitively, that the measured values (i.e., the data) are
acquired through sampling from a common, universal probability
distribution. Our chosen value for the error associated with these
data represents an estimate of the standard deviation of this
distribution. Let us assume that the best value is actually 100
counts- per-minute. The proper absolute error to assume for each value
would then be 10 (corresponding to 10%). This result is consistent
with our suggestion that the covariance matrix for the data set be
computed using percent errors and the best-estimate value. Several
independent measurements of the same physical quantity, each made with
the same degree of confidence (as expressed by the percent error), can
be viewed statistically as sampling from an event space in accordance
with a well-defined probability f;nction. The variances associated
with the individual measurements should then be identical, even though
the values actually obtained will vary. This statement is absolutely
true if each of the quantities is considered to be governed by the
same type of probability distribution (e.g., a normal distribution&,
and it should be approximately true even if each trial is governed by
a different type of probability distribution.
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It is unfortunate that this approach leads us inevitably to
generate a covariance matrix V for the data which depends upon
plausible a priori knowledge of the solution S. In fact, this is not
the only complication we face. Ve shall see below that, in many
applications of the least-squares method, Yexp will also depend to

some extent on S. To see how this can come about, we review the steps
which are normally taken in performing an evaluation based entirely on
experimental data:

Step 1: A comprehensive set of all the relevant data is gathered
from the literature.

Step 2: Based on information provided in the documentation for each
data set, on supplementary information available to the
evaluator, and on the evaluator’s own good judgment, some
adjustments may be made to the original results (including
the uncertainties) in order to insure that they indeed do
correspond to what it is claimed that they represent, and to
insure that appropriate data weighting factors are generated
for the evaluation process.

Step 3: The evaluator then develops a linear regression model (i.e.,
a design matrix A) which relates the adjusted information to
the parameters he has selected to evaluate. If the data base
is large, he also may find it convenient to reduce the size
of the arrays which must be manipulated, through the
averaging of equivalent quantities, even though this step
can lead to biased estimators [Poe81].

Step 4: Finally, the least-squares procedure is applied to obtain
the evaluated results and their uncertainties.

Let us represent the experimental data emerging from Step 2 by
the array yg..,- For mathematical convenience, we choose to represent

symbolically by the matrix operator F(S) all those procedures in Step
3" which are taken to reduce the number of raw data points, to shift
them to equivalent values at grid energies, etc. This is where the
dependence of Yexp O™ S can enter. Thus, Yexp * yexp(S) = F(5)¥4ata-

The array Yexp will have a dimension which is often smaller than that
for Ydata’ but under no circumstances will have a larger one. The

covariance matrix V = V(S) with which we are concerned in the
least- squares evaluation procedure corresponds to Yexp® N0t t0 Yy,

Since VY and Yexp (possibly) depend upon S, it would appear that,
in our derivation of estimators for S and VS, we should re-write the
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least- squares condition of Eq. (1) in the form
U(S) = Wexp(S) - Yeare) W(8) [Veyp(S) - ¥eqyc) = minimum, (24)

where V(S) = V'I(S). Although not indicated explicitly here, it is
clear from the discussion in Section 1 that ycalc also depends on S.

It is most inconvenient that the relatively simple expressions for S
and Vg which follow from Eq. (1), and are reflected in Eqs. (2) and

(3), are no longer strictly valid when we try to satisfy the condition
of Eq. (24) by adjusting S. The essence of our proposition is that
this problem be circumvented by replacing Eq. (24) by the condition

U(S580) = [exp(Sp) - ASTMV(S,) [Yexp(So) - 48] = minimum. (25)

Eq. (25} is an approximation to Eq. (24) which is mathematically quite
tractable and, hopefully, provides reasonable solutions to practical
evaluation problems. Sy in Eq. (25) represents a reasonable a priori

estimate of S. Ve see that a solution (in terms of SO) can be obtained
from the expressions

S = G(SO)yexp(SO) = G(SO)F(SO)ydata’ (26)
Vs(Sy) = [A'V(S AT Y, : (27)
6(Sy) = vs(so)A*V(so). (28)

Before we proceed any further, let us pause to examine what
happens when we apply our suggested approach specifically to Peelle’s
example (see Section 2). We will denote the constant parameter which
is required to determine the elements of the covariance matrix V by
So- If ve substitute S, for y, and Yo in Egs. (19) - (21) ve obtain:

_ 2 _ - 2 _ 2 .
V11 = 0.0530 R V12 = V21 = 0.04S0 and V22 = 0.05S0 . It is seen that

the unknown factor 802 conveniently cancels in the least-squares
analysis for this problem, and we are led unambiguously to the
solution S = 1.25, Vg = 0.0784 and 12/f = 4.00. This is a reasonable
result even though the confidence level is low due to the large value
of xz/f. This deficiency could be remedied easily by multiplying Vg by

the factor 4.00. The fortuitous cancellation of the unknown factor 502
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in this analysis is characteristic of what happens when only a single
parameter is evaluated, and a linear model relates the data to that
parameter. Othervise, iteration is required and matters are more
complicated.

The quantity S0 which we have introduced in this formalism

appears to be rather arbitrary. Earlier, ve referred to it as simply a
reasonable a priori estimate of S, knowing full well that usually we
are not aware of just how to make an optimal choice for S0 at the

outset. Since the a posteriori solution for S which is derived from
Eq. (26) is clearly dependent upon the ad hoc choice of an a priori
(on 0), we are inevitably led to pursue an iterative procedure in

order to seek convergence toward the best possible final solution for
S which the data (and the present approach) will allow. Each step of
this iteration procedure incorporates the familiar least-squares
methodology which is embodied in all of the computer codes that are
currently in widespread use for data evaluation [e.g., Poe81 and
Smi82b]. 0f course, if the final solution to every problem has to be
obtained through iteration, we must be very concerned about the whole
matter of convergence. Ve will now introduce some notation to simplify
the following discussion. If we let H(S) = G(S)F(S) and, for
convenience, ¥ = Yqa4,5 Eq. (26) can be vritten in the simplified form

§ = H(Sy)y = 6(Sy)F(Sy)y- (29)

The iteration procedure can then be represented symbolically by the
following formulas

Sl = H(SO)Ys
32 = H(Sl)y,

(30)
Si+1 = H(Si)y (i22),

where S0 is our initial estimate of the solution S. The iteration
procedure is continued until Si+1 R Si’ that is until the difference
between Si+1 and Si is as small as we like. Then we can say that an
acceptable degree of self consistency has been achieved.
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A very important consideration is whether this iteration process
will actually converge to a well-defined solution S? Furthermore, to
be viable, this procedure should lead to an S which is independent of
or, at worst, only weakly dependent on, the initial choice of a priori

SO! Ve shall now derive a condition for convergence. To do this we
note that 5, =15 + (8¢ - §) =5 + dS,. Referring to Eq. (30), the

first stage of iteration yields
S; = H(Sp)y = [H(S + dSp)]y
[E(S) + dH(S)]y

H(S)y + [(dB/dS)dS)y
S + [(dH/dS)y]dS,.

1

(81)

£

Ve have employed a first-order Taylor series expansion in order to
obtain an approximate expression for the matrix operator H(S + dSO).

Care must be taken to preserve the order for those matrices appearing
in Eq. (31) because matrix multiplication is usually not commutative.
If ve assume that y has dimemsion (n,1) and both S and dS, have

dimension (m,1), then the expressions above are consistent if and only
if H and dH have dimension (m,n) and [(dH/dS)y] has dimension (m,m}.
The quantity [(dH/dS)y] must be interpreted in the following way: It
represents a matrix comprised of elements which are actually sums of
products of components from y and partial derivatives of the elements
of H with respect to the components of S. For convenience, let
T = [(dH/dS)y]. Then, the elements of T have the form

n

where S1 is the 1-th component of S, Y, is the o-th component of y and
B, is the (k,a)-th element of H. It is easy to show that the second
stage of iteration yields

Sg 5+ [(dH/dS)y][(dH/dS)y]dS0

(33)
= S + [(dH/ds)y)%ds, = 8 + 125,
Continued iteration, according to Eq. (30), leads to the result
S, = S+ [(dH/dS)y]’dS, = S + T'dS, (i > 2). (34)

Note that T has dimension (m,m) for all i > 0. Iteration is
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terminated when the evaluator is convinced that further iteration will
not change the current evaluated results significantly. We note that
the matrix T = [(dH/dS)y] depends only on S and the data, not on S-

It is also clear that the iteration procedure indicated above will
converge (i.e., S, -+ S as i~ o) so long as

lim 8 = [0], (35)

where J0%4symbolizes a "zero" matrix with dimension (m,m). Let 7 be
defined by

T = max{ITk1|} (k,1 = 1,m). (36)

Thus defined, r represents the maximum magnitude of any of the
elements of T. It can then be shown that a sufficient (though not
necessary) requirement for the condition reflected in Eq. (35) to be
satisfied is that

lin (17 = o, (37)

l1 - m

Eq. (37) represents a much stronger constraint on the magnitude of 7
than the simple inequality 0 < 7 < 1. Under the conditions indicated
above, convergence is achieved without regard to dS, = (S0 - §), i.e.,

to the initial choice of SO' 0f course, the assumption that the
magnitude of dS0 is usually fairly small prompted us to consider

employing a first-order Taylor series expansion in the first place.
Furthermore, we shall see that the magnitude of dS0 does influence the

rapidity of convergence.

The success of our method depends heavily on achieving
convergence, as described above. We now offer some crude arguments
which support our conjecture that rapid convergence will usually be
achieved in practical situations. We recall that H(S) = G(S)F(S). An
evaluator is free to choose an energy-grid structure for his
evaluation which minimizes the sensitivity of F to S considerably,
i.e., one for which F is so weakly dependent upon S that we can treat
it as being nearly a constant matrix. Then H(S) =» G(S)F. The
sensitivity of H to S will then derive from the sensitivity of G to S.
It is clear from Egs. 527) and (28) that the dependence of G on 5 can
be traced to a dependence of V on S. It is also evident that G

involves products of elements of v! (and therefore of V, indirectly)
through the factor Vg = (A+V—1A)'1. So, we are led to suspect that
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there will be a tendency toward cancellation of those terms in G which
might otherwise depend strongly on S and, thus, that the senmsitivity
of G to S will also tend to be quite modest. G is totally independent
of S for those evaluation problems involving only a single parameter
(m = 1). Then, as we have seen, iteration is not requiréd to obtain
the solution, although S should be derived first in order to obtain

the final representation of the covariance matrix VS and 12. 0f

course, this is the case in Peelle’s example, as described in
Section 2.

Ve vill now examine the matter of minimum variance since that is
an issue which is of interest for applications of the least-squares
method within the framework of classical statistics (see Section 1).
For a fixed value of SO, the least-squares criterion insures minimum

variance by virtue of the Gauss-Markov theorem (as amended by Aitken
for correlated data), but this variance depends upon SO' Vhat happens

to the quadratic form § and to the variance as the iteration process
progresses toward a solution? We first need to define what we mean by
minimum variance for a multi-parameter problem. The generalized
variance for the data set Yexp is defined as det(V), i.e., the

determinant of the covariance matrix V [Fis63]. Likewise, the
generalized variance for the solution S is det(VS). Ve would like to

have both § and det(VS) decrease as a result of the iteration process.

In practice, this can be tested fairly simply by invoking some
well-known properties of the associated matrices. First, we note that
V can be written in the form V =0 C U, where C is the correlation
matrix and U denotes the diagonal matrix with elements

/2

and 6ij is the Kronecker delta function. It can be shown easily that

vavi-yglcglyl, (39)

The inverse matrix Z = U 1 is easy to determine. Since U is diagonal,
the elements of its inverse Z are given quite simply by the expression

3 = Vi) by (40)

Thus, the inverse of V can be derived readily from the inverse of C.
Ve will now prove that C does not vary during the iteration process
and, therefore, only one matrix inversion operation actually needs to
be carried out in the analysis, no matter how many iterative steps are
required to obtain a good solution for S! This is an important result
because the inversion of matrices can be an arduous task when the
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matrix dimensions are large. It can be shown, based on a discussion by
Smith [Smi87b], that the elements of V can be written as

A
Vi SisjAleAij(0'01P)i)(0'01PAj)’ (41)

vhere PAi is the percent error in the element Si of S and BA is a

micro- correlation matrix (both associated with uncertainty attribute
). Since the elements of C are given by

Cij = vij/(viivjj)1/2’ (42)

it is clear that the dependence upon S cancels. It also happens that
the correlation matrix CS which corresponds to the solution covariance

matrix V¢ is also unchanging with successive iterations. Furthermore,
since

det (Vg) = det(CS)(iEIVSii), (43)

we can follow the behavior of the generalized variance for S by simply
computing the product of the diagonal elements of VS (squares of

errors) at each stage of the iteration, noting that det(Cg) is

constant. Actually, for this purpose it is more meaningful to compute
the product of the enhanced variances, i.e., the quantities

(xz/f)VSii. The technique is discussed further in Example 1 of
Section 4.

Let us turn now to a consideration of the practical aspects of
iteration. Our experience in applying this method has involved
utilization of a recently revised version of the GMA code package
Sconsisting of DATGMA and GMA). The GMA code package was first

eveloped by Poenitz [Poe81%. The transformation operation represented
by F(S) is embodied in DATGMA while that for G(Sg is carried out by
GMA. Ve have found that it is desirable to pursue a double-iteration
procedure, as shown schematically in Fig. 1. Outer iteration involves
apilication of both DATGMA and GMA while inner iteration involves only
GMA.

A few words are in order here concerning the matter of adjusting
data to selected grid energies and then averaging them to reduce the
size of the experimental array to be handled in the evaluation. Such a
procedure can lead to some bias in the estimators, but this small
price may be more than compensated by the advantage to be gained by
reducing the sizes of matrices V which have to be inverted in
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applications of the least-squares method [P0e813. Smith [Smi87a] has
described a rigorous procedure for "collapsing" data. However, we find
that the following approximation to this method often is quite
satisfactory, and it is considerably easier to implement in computer
programming. For this reason, we have utilized this approach in our
revision of the GMA evaluation code package. The technique involves
collecting all those data values from a particular experiment which
end up being shifted to a particular energy grid, and then averaging
them in accordance with weight factors based only on percent random
errors. This procedure reduces random error while retaining the common
systematic error. A simple example will suffice to demonstrate the
utility of this approach. Suppose that two values, 100 and 91, are to
be averaged to form a single result. The first value has 27, random
error while the second has 3% random error. Each has a common
systematic (1007} correlated) error of 5%. The exact solution (based on
an application of our method and consideration of the complete
covariance matriff is 97.23 + 5.12 (5.3% total error). The present
approximation leads to 97.23 with a 5.3} total error (1.7% attributed
to random error and 5% to systematic error). These results are
identical to the quoted accuracy.

The issue manifested in PPP also has implications in more complex
Bayesian data adjustment applications [Smi82b]. In these problems it
is generally assumed that the previously existing information is
represented by an evaluated parameter set (called the a priori set)
and its corresponding covariance matrix. In data adjustment it is
desired to update this evaluation by the consideration of new data.
The wusual practice is to assume that the new information is
independent of the old (uncorrelated to the a priori). The method of
generalized least squares is commonly used to analyze these problems.
In accordance with present considerations, the covariance matrix for
the a priori may present a problem if it was produced by an evaluation
in which the then-available data were improperly weighted (a distinct
possibility in view of the discussions in this report). An obvious
difficulty arises in deciding how to construct the covariance matrix
for the new data sets. One choice would be to base it upon percent
errors and the a priori parameter set. Iteration would be carried out,
and successive steps in the process would lead to adjustments in this
covariance matrix. However, it seems to us that this procedure would
tend to jeopardize the assumed independence of new and prior
information! The resolution of this issue is obviously a worthy topic
for future investigations.
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4. SOME EXANPLES VHICH DENONSTRATE THE PROCEDURE

This section is devoted to a discussion of two practical
applications of the method we have described in this report. Both are
examples involving real evaluations of nuclear data.

Example 1:

The first example we shall consider involves a differential cross

section evaluation for the reaction 115In(n,n’)llsmln. The details of
the evaluation process have been reported by Smith et al. [Smi+90] .
This evaluation is based entirely on experimental data. Qur initial
choice for the a priori §, (which we shall refer to as the "good" a

priori) came from ENDE/B-V [BNL79]. A revised version of the GMA code
package was employed in this analysis. It facilitated the application
of our new method involving iteration, in which covariance matrices
are calculated at each stage using percent errors and the current
best-estimate values of those parameters to be estimated. Excellent
convergence to the final solution S was obtained after the following
sequence of steps: [DATGMA(1) + GMA(3) + DATGMA(1) + GMA(2)]. The
values in (...) show the number of successive applications for the
indicated code. To test the convergence properties further, we made a
nyild" choice for the initial a priori SO' The cross section was taken

to be 1 mb at each grid energy (we shall refer to this as the "bad" a
priori). Very good convergence 1o the same final solution S was
ultimately obtained with the following sequence of iterative steps:
[DATGMA(lg + GMA(3) + {DATGMA(1) + GlA(%}} 4)]. The notation {...}(4)
indicates that the procedure represented by {...} was repeated four
times. Progress in convergence tovard the final solution, as measured

by the value of chi-square (x2), is traced in Fig. 2 for both choices
of a priori SO' The solution clearly converges more rapidly for the

"good" a priori than for the "bad" a priori, but even for the latter
the final solution S was obtained after surprisingly few iterative
steps. We have not exhibited the corresponding progress that was made

by the enhanced generalized variance, (12/f)mdet(vs), as we proceeded
through the iteration steps. Since the det(CS) is constant, this could

be traced by computing the product of the enhanced errors for the
elements of the solution S. It was found that this quantity decreased
rapidly during the first few iterative steps and subsequently
stabilized as the final solution was approached. Thus, it appears that

iteration leads not only to reduced xz, but also to a significant
decrease in the generalized variance.

The evaluation was also carried out using the original version of
GMA, in which absolute covariance matrix elements are derived from
percent errors and actual data values (0ld method). There were no
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iterations involved in this analysis. The results are compared in
Figs. 3 - 5. It is clear that these two distinct approaches lead to
quite different results. The evaluation produced by the new method

yields a calculated (C) spectrum-average cross section for 25204
spontaneous- fission neutrons which is about 4% closer to the evaluated
experimental (E) integral value than is obtained by using the ENDF/B-V
differential cross section representation, i.e., C/E is closer to
unity [Smi+90]. On the other hand, the old method yields a solution
which produces an inferior C/E comparison, relative to the ENDF/B-V
differential cross section representation! This outcome provided us
with good motivation to embrace this new approach in preference to the
alternatives.

Example 2:

Our second example involves an evaluation of 14-MeV cross
sections. It is based on the work of Evain et al. [ESL85]. The

reaction we have considered is 59Co(n,p)nge, as discussed on
pp. 115 - 120 of that report. Ve have drawn the specific information
required for the present analysis from Table 2, p. 118, of the report.
First, we analyzed the available information using the old method. Our
resulting solution for the evaluated 14.7-MeV cross section is

56.6 + 3.14 mb, with xz/f = 8.53. The enhanced error is therefore 9.17
mb (16.2% error). This agrees quite well with the result reported by
Evain et al. [ESLS;}. Ve then re-analyzed the same information using
our new approach. An a priori estimate S0 of the solution was not

required here to obtain S because only a single parameter is involved.
However, the a posteriori solution is needed in order to evaluate the

uncertainty and lef. Our result from this analysis is 70.2 = 3.67 mb,

with xz/f = 6.16. The enhanced error is therefore 9.10 mb (13.07
error). The difference in these two results is obviously quite large.
However, the values do overlap within their uncertainties. Notice that
the evaluated result from the new method is larger than the one
obtained by the old method. Ve recall that Peelle’s comments were
prompted by his observation that evaluated results often appear to be
lowver than might be intuitively expected.

These two examples clearly demonstrate that the results from
evaluations can be strongly influenced by the method used to compute
the data covariance matrix. Naturally, this raises questions about the
reliability of some of the results generated by earlier evaluation
efforts, e.g., those produced by the work of Evain et al. [ESL85].
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5. INPLICATIONS FOR NUCLEAR DATA EVALUATION

Statistical data evaluation and data adjustment procedures have
been used widely in nuclear data and nuclear technology applications
for well over a decade. A number of codes have been employed for these
purposes. Our knowledge of the specific procedures incorporated in
these codes is derived mainly from our experience with the GMA
package. As indicated above, those versions of the GMA-package codes
which were originally used in this laboratory involved computation of
data covariance information directly from the experimental data, a
procedure which we now bélieve is very questionable as a result of the
present investigation. It is evident from the preceding discussions
that, in practice, this is not too serious an issue SO long as the
data errors are small, the scatter in these data is consistent with
these errors, and there is no dominant systematic error component
which is common to all of the data to be evaluated. This is likely to
be the case for most evaluations of standards data and of certain
other data, such as fission cross sections, where there exist abundant
and relatively consistent data bases. However, even in such favorable
instances, revealing questions need to be asked concerning the impact
on earlier evaluations of specific procedures which were used to
determine the requisite covariance matrices for the corresponding
least- squares analyses.

The problems may be more severe in other contexts, e.g., where
the data scatter considerably and there are significant discrepancies
(as discussed in the examples of Section 4). Evaluators should examine
the code packages which they now employ in their work to ascertain
just how the required covariance matrices are determined. The
emerience of this issue reinforces our long-held opinion that
uninformed ("blind") applications of evaluation computer codes,
especially those which are poorly documented and/or are attributable
to authors other than the user(s), are guaranteed to lead to trouble!

Opinions tend to be divided within the nuclear data community
concerning the desirability of iteration in performing evaluations. Ve
find that iteration is essential for successful application of the
method described in this report. This offers few conceptual
difficulties (other than an increase of labor) for evaluations based
entirely on data. However, as mentioned in Section 3, we foresee some
conceptual problem areas associated with utilization of more complex
procedures involving Bayesian priors in conjunction with the
least- squares method (i.e., with generalized least-squares analysis).
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6. CONCLUSIONS

Ve find that it is possible to resolve the issue raised in
Peelle’s Pertinent Puzzle z$PP) by deriving data covariance matrices
used in least- squares estimation formulas trom percent errors in the
data and reasonable a priori estimated values for the parameters to be
evaluated, rather than values acquired directly from the experimental
data. So long as a single parameter is being evaluated, we can be sure
that the specific value which is assumed for this a priori estimate is
irrelevant, at least as it concerns determination of the solution
itself. However, proper knowledge of this solution is ultimately
needed in order to obtain a correct value for its uncertainty. The
issue becomes more complicated in exercises involving the evaluation
of more than one parameter. Here we find that reasonable a priori
estimates for the parameter-array values are required, and iteration
is necessary in order to arrive ultimately at an acceptable overall
solution. A condition for convergence of this iteration procedure has
been established, and it is found that adequate convergence can be
anticipated with relatively few iterations for most applications of
practical interest. The procedure appears to be quite forgiving (i.e.,
robust) insofar as the choice of initial estimates for the parameter
values is concerned. The impact of PPP on nuclear data evaluations can
be significant, especially for those cases involving discrepant data,
large errors and significant correlations. Further study is needed to
ain an understanding of how to properly approach generalized
east- squares adjustment problems §i.e., those based on Bayesian
methodology) within the framework of the concepts discussed in this
report.
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START

4

So = Initial

Outer Iteration

Yox» = F(SD)Yd-Qn

Inner lteration

Sis1 = G(Si)yo!r

Si = S8im

> so = SHI

Solution = 8 = G(SHF(S)Yaute = S;ui

END

Figure 1: Flow chart for a typical evaluation procedure, as based on the
present investigation. S, is the a priori parameter set to be used in data
preparation (at the current outer iteration stage). S, is the a priori
parameter set to be used in the least-squares analysis (at the current
inner iteration stage), while S;,; is the a posteriori parameter set, which
then serves as the a priori for the subsequent inner iteration step.
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Figure 2: Convergence toward the final solution for Example 1 in Section 4
is traced through several iterative steps for two choices of an initial a
priori, S,, namely a '"good" a priori and a "bad" a priori. The value of
chi-square (y?) is used to measure the progress at each step. Each of the
"jumps" in x? (which occur at iteration Nos. 4, 6, 8, 10, respectively, for
the "bad" a priori choice) corresponds to the start of a new "outer
tteration” cycle, as indicated in Fig. 1.
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Figure 3 Comparison of evaluated results gthreshold to 2 MeV) for
0

115In§n,n’)115m following the application two distinct least-squares evaluation
procedures, as discussed in Section 4: A --- The data covariance matrix is derived from
percent errors and actual measured values. B --- The data covariance matrix is derived from
percent errors and best-estimate values for the parameters, as deduced from iteration.
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Figure 4: Comparison of evaluated results (2-10 MeV) for the reaction !'!5In(n,n’)ttsm
following the application of two distinct least-squares evaluation procedures, as discussed
in Section 4: A --- The data covariance matrix is derived from percent errors and actual
measured values. B --- The data covariance matrix is derived from percent errors and
best- estimate values for the parameters, as deduced from iteration. It is clear that for this
energy range the results from Method B provide a better representation of the experimental

data than those from Method A.
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Figure 5: Comparison of evaluated results £threshold to 20 MeV) for the reaction
115In§n,n’)115m following the application of +two distinct least- squares evaluation
procedures, as discussed in Section 4: A --- The data covariance matrix is derived from
percent errors and actual measured values. B --- The data covariance matrix is derived from
percent errors and best-estimate values for the parameters, as deduced from iteration. The
results from Method A fall below those of Method B over the entire energy range.



