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Nuclear Data and Measurement Series

The Nuclear Data and Measurement Series presents results of studies in the field
of microscopic nuclear data. The primary objective is the dissemination of information in
the comprehensive form required for nuclear technology applications. This Series is
devoted to: a) measured microscopic nuclear parameters, b) experimental techniques and
facilities employed in measurements, c) the analysis, correlation and interpretation of
nuclear data, and d) the compilation and evaluation of nuclear data. Contributions to this
Series are reviewed to assure technical competence and, unless otherwise stated, the
contents can be formally referenced. This Series does not supplant formal journal
publication, but it does provide the more extensive information required for technological
applications (e.g., tabulated numerical data) in a timely manner.
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ABSTRACT

Numerical functions or equivalent algorithms are commonly used to derive estimates for
physical quantities that can be expressed in terms of more fundamental physical
parameters. It is shown that in situations where large uncertainties (errors) are involved in
these parameters, or where error amplification occurs through severe non-linearity of the
functions, conventional deterministic techniques for calculating the derived quantities and
estimating their errors can lead to erroneous results. Instead, it is necessary to resort to a
probabilistic approach and thereby obtain estimates for mean values and variances of the
derived quantities through Monte Carlo simulation in order to preserve the essential
information without distortion. The correct choice for a probability distribution is
suggested by the inherent nature of the random variable in question. Examples are given
from the analysis of radioactivity decay, the shielding of penetrating radiation, and the
derivation of nuclear reaction rates that are used in astrophysical calculations to model
nucleosynthesis of the elements in stellar explosions. Subsequent analyses that use these
derived quantities must also be carried out in a probabilistic manner to insure that the
obtained results will reflect the underlying information properly.

----------
a This work was supported by the U.S. Department of Energy, Office of Science, Office
of High Energy and Nuclear Physics, Division of Nuclear Physics (SC-23) under
Contract W-31-109-Eng-38.
b Corresponding author – Tel: +1(630)252-6021; Fax: +1(630)252-5287; E-mail:
Donald.L.Smith@anl.gov.
c Summer Research Associate supported by Office of Science, Office of High Energy and
Nuclear Physics, Division of Nuclear Physics (SC-23) under Grant DE-FG02-
99ER41116.

mailto:Donald.L.Smith@anl.gov


10

(Blank Page)



11

1.  Introduction

In basic and applied science, as well as in engineering applications, there is
frequent need to consider a physical quantity or a set of physical quantities that can, in
turn, be derived from one or more fundamental parameters. It is a well-established
theorem of statistics that a quantity that is related to a random variable through a well-
defined and well-behaved (continuously differentiable) functional relationship can also
be treated as a random variable and therefore possesses its own associated probability
distribution [1]. To illustrate this point, let us suppose that

y = f(x).                                                               (1)

Here, x is a single, primary random variable governed by the normalized probability
density function p, i.e., a function for which

� p(x)dx = 1.                                                           (2)

The range of integration extends continuously over all values for which parameter x is
defined. In applications, it is typical to assume that if xa is a particular value of x then ya
= f(xa) is the appropriate choice for the derived value of y. This deterministic approach
can be generalized to treat sets of primary parameters x and derived quantities y with
arbitrary (finite) dimensionalities, as expressed through the vector functional relationship

y = f(x).                                                           (3)

We will demonstrate that this traditional approach is often inadequate to handle situations
where x is so uncertain (large error) that a correspondingly large error results for y. We
may also encounter equivalent difficulties if the function f is non-linear, possibly leading
to severe conditions that can produce error amplification. Then, the error in y might be
quite large even when the error in x is relatively small. The same comments can be
applied to sets of primary random variables and their functional relationships, but for
convenience we will restrict the present discussion to a single variable and function.

There is no need to define “non-linearity” in the context of a function f. This
particular concept is quite unambiguous. What does require definition here are the
expressions “large error” and “severe condition”.

For present purposes we will define an error in x to be “large” if x is governed by
a probability distribution function p that possesses a well defined mean value

mx = <x> = � x p(x)dx ,                                                    (4)

yet at the same time this probability function is observed to be quite broad in shape and
often asymmetrically distributed with respect to its mean value [1]. Expressed more
precisely, the variance
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µ2x = < (x- mx)2 > = �  (x-mx)2 p(x)dx                                         (5)

and the corresponding standard deviation

sx =  (µ2x)½                                                           (6)

that are associated with the probability function p are significantly large. For practical
considerations, it turns out that in this context the borderline between “small” and “large”
errors (standard deviations) corresponds to fractional errors on the order of 30%. The
reason for this particular boundary point selection is that the applicable probability
distribution, as we shall see more clearly from the discussion in Section 7 and Fig. 4,
become noticeably skewed for an error that is larger than this value.

A “severe” condition is said to exist when

my ≡ <y> ≠ f(mx)                                                     (7)

and, furthermore, my differs significantly from f(mx). In other words, when the inequality
expressed in Eq. (7) is considerable. For the formulas considered in this report, we
choose to use the notation < … > to signify averages of random variables with respect to
the applicable probability distribution functions. What is a “significant” difference?
There is no rigorous answer to this question. From a practical point of view, a difference
becomes significant when the bias introduced by assuming that <y> = f(mx) leads to a
systematic deviation (systematic error or bias) in the derived physical quantity that is
unacceptable to the user in a particular application. It is important to realize that such a
bias will develop to some extent in all non-linear functional relationships, and that it need
not be a consequence of a breakdown in applicability of the mathematical formulation of
the physical problem. In fact, many features of the physical world can be modeled only
by using non-linear functions. Often, these small differences are neglected, but we will be
examining cases in this report where they cannot be ignored. While random error tends to
be unavoidable, and possibly dominant, scientists should resort to whatever means
possible to minimize the effects of systematic error.

The main objective of this paper is to demonstrate an approach that allows
physical problems involving very large errors and severe conditions to be handled with
minimal loss of the fundamental information content inherent to these problems. By
“fundamental information” it is meant, in this context, detailed knowledge of the
probability distribution(s) which govern the observation (measurement) process by which
we gain information about the physical phenomena that interest us. Consequently, the
method that will be discussed in this paper involves consideration of the underlying
probability function(s) for the random variable(s) as well as the development of a
consistent way to parameterize the essential information content efficiently without
jeopardizing its fidelity. In short, we will suggest an approach to data compression that
nevertheless optimizes both fidelity and preservation of critical information. This topic is
of considerable practical interest because large errors and severe conditions arise in a
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variety of realistic physical problems. Three of these situations are examined in the
present paper to illustrate the concepts. Those processes to be considered are radioactive
decay over long time periods, deep-penetration radiation shielding, and the determination
of astrophysical nuclear reaction rates at low stellar temperatures. Finally, we shall take
another look at some effects of errors and non-linearity.
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2.  Principle of Maximum Entropy and Specification of Probability Distributions

It is apparent from the discussion in Section 1 that knowledge of the probability
density function p is essential in situations where large errors have to be considered. How
should it be determined? It is commonly assumed that the normal (Gaussian) probability
function is the appropriate one to use. If more than one variable is involved, then the
multi-variate normal distribution is often applied. We shall see that this assumption may
have to be abandoned in certain situations where the errors are large and the conditions
severe. In order to obtain guidance concerning the appropriate selection of a probability
function, it is necessary to invoke the Principle of Maximum Entropy [1,2,3] which is one
of the foundations of modern Information Theory [4]. This theoretical recipe tells us that
the best choice of a probability function p is established unambiguously once we specify
the basic properties of the random variable in question. For example, if we assume that
the variable x can take on any value between -∞ and +∞, and we possess only an estimate
of the mean value mx and its standard deviation sx, then the optimal choice for p is indeed
the normal probability function. However, since most physical parameters, such as cross
sections, particle kinetic energies, resonance strengths, etc., are represented by inherently
positive numbers, i.e., x > 0, the normal probability distribution may not be appropriate in
extreme situations since it does not prevent x from occasionally becoming negative. We
shall demonstrate this point in Section 6. If x > 0 and we possess only estimates for mx
and sx, we should employ the lognormal distribution for p [3]. If we know only that x > 0,
but have no other knowledge about this random variable, then we ought to apply Jeffreys’
Prior distribution [5]. This rule dictates that the probability function for ln x be uniformly
distributed from -∞ and +∞ or, equivalently, that

p(x) ∝ 1/x     (for x > 0).                                                    (8)

If we know that x lies somewhere in the range (xmin,xmax), but have no additional
information concerning p, then a modified version of Jeffreys’ Prior distribution is
appropriate. It should then be assumed that ln x is uniformly distributed over the range (ln
xmin, ln xmax) and that there is zero probability of x being found outside this range. We
will learn more about the important normal and lognormal probability distributions and
their relationships to each other in Sections 6 and 7.

Regardless of which probability function is applicable to a particular situation, it
is those specific parameters that characterize this function which contain all of the
essential information content [1]. These parameters are generally closely related to low-
order moments of the probability function. In particular, the mean value and standard
deviation are generally considered to be the most crucial of these moments. Therefore,
we should always interpret the “value” and “error” of a particular physical quantity
(measured or evaluated) as being the “mean value” and “standard deviation”,
respectively, corresponding to the applicable probability distribution function. In the
presence of uncertainty, no other interpretation is consistent with reality. This probability
function governs the outcome of any sampling process (actual measurements or
simulated using Monte Carlo techniques) associated with the random variable that
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represents the physical quantity in question. This specific probability function will belong
to a particular category of functions according to the actual knowledge we have about the
physical quantity under consideration. In many cases the functional category itself will
belong to the broad family of functions known as gamma functions [3].

Finally, we will examine very briefly in this section how information derived
from a functional relationship, as described above, should be interpreted in the presence
of large errors. We have already noted in Section 1 that assuming a deterministic
relationship between a primary physical parameter x and a derived one y may lead to
biased results. If  a functional relationship f exists between random variables x and y, as
indicated in Eq. (1) – and x has a large error with (very likely) an associated asymmetric
probability density function p – it will be necessary to deal with the resulting probability
density function q corresponding to y rather than considering just one specific value of y.
In some cases this probability function q can be derived by analytical transformation
from p, but more often than not it will be necessary to generate an approximation to q
empirically through random sampling (i.e., by using the Monte Carlo method) [1]. If the
functional relationship between x and y is known, it is a straightforward exercise to
obtain estimates for the mean value my and standard deviation sy of the probability
distribution q for the derived variable y – without having knowledge of the detailed
nature of  q – by using a sampling procedure. The applicable formulas are

my ≈ <y>                                                           (9)

and

sy ≈ [<y2> - my
2] ½ ,                                                 (10)

where the indicated averages < … > are calculated in the usual Monte Carlo fashion from
the accumulated collection of sample values y1 = f(x1), y2 = f(x2), … , yN = f(xN) resulting
from a sampling sequence that produced x1, x2, … , xN. Here, N denotes the number of
traced sampling “histories” [1]. Approximate equality is indicated in Eqs. (9) and (10)
because results obtained from Monte Carlo sampling are never exact, no matter how
many histories N are traced. When we have no other basis for selecting a particular
probability distribution function q other than empirical results from sampling, there is a
convenient option available. For pragmatic reasons we may decide not to deal with the
empirical distribution that results from sampling (with all of its numerical detail). We
could instead simply choose to invoke the Principle of Maximum Entropy and accept the
particular probability distribution type that is dictated by the information we intend to
retain from the sampling exercise. However, in so doing we should be aware that we
deliberately are choosing to reject some potentially useful knowledge about the derived
variable y. It would be unfortunate to do this after having already performed an extensive
set of Monte Carlo simulation calculations. We really need to be sure of how the retained
information is to be used in subsequent applications before deciding what information to
retain and what to discard. We also should be cognizant of the fact that a decision to
reject information could lead to a violation of certain fundamental rules of statistics.
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These decisions obviously call for the exercise of good judgement rather than blind
reliance on mathematical algorithms.
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3.  Non-linear Functions and the Error-amplification Effect

A linear function of a single random variable can be expressed in the form

y = f(x) = a0 + a1x                                                  (11)

where a0 and a1 signify ordinary constants. For simplicity, we shall assume that a0, a1, and
x are positive numbers. Simple error propagation analysis utilizes the formula

sy ≈ |df/dx| sx = a1 sx ,                                              (12)

where the notation |…| means absolute value and “s” denotes standard deviation. The
fractional error in y can then be determined in terms of the fractional error in x. We
obtain the following result:

sy/y ≈ a1 sx /(a0 + a1x) = [a1 x / ( a0 + a1x)] (sx/x) < sx/x .                (13)

There is no error amplification since the fractional (or percent) error in y cannot exceed
the corresponding error in x for this situation.

The same cannot be said for non-linear functions. Before generalizing, we offer
two specific examples that serve to illustrate the point. Suppose, e.g., that

y = f(x) = x3     (x > 0).                                             (14)

It can be shown easily by a similar analysis that

sy/y ≈ 3 sx/x.                                                     (15)

This corresponds to a fixed error-amplification factor of 3 regardless of x. Another
interesting example that has important practical implications involves the exponential
function. Suppose that

y = f(x) = a0 exp (a1 x)     (x > 0) ,                                      (16)

where a0 and a1 are both positive. Following the same procedure we find that

sy/y ≈ (a1 x) sx/x .                                                 (17)

The error-amplification factor  “ a1 x ” depends upon x and it can be exceedingly large if
x is very large. Of course this elementary approach to error estimation is overly
simplistic, and it tends to break down when the errors involved become large. It is based
on considering only the first-order terms of a Taylor’s series [1]. Nevertheless, these
simple examples do illustrate the inherent difficulties that may be encountered in dealing
with large errors and non-linear functions, even when the more rigorous probabilistic
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approach considered in the present investigation is pursued. In any event, it is evident
from an examination of Eqs. (11), (12), (15), and (17) that extreme conditions arise in a
single variable case when {(x/y) |df/dx|} >> 1.
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4.  Deterministic Calculations and Error Propagation

The deterministic approach to calculating derived quantities and their errors – as
embodied in Eqs. (1) and (12) and easily extended for multiple variables to include
derivation of covariance information (errors and correlations) by the application of a first-
order Taylor’s series approximation – is widely used in basic and applied science [1]. It is
also the starting point for data-fitting exercises based on applications of the least-squares
method [1,6]. This approach will be employed in the present investigation to provide
deterministic values that can be compared with results obtained from a more general
probabilistic approach to the specification of derived values and their errors. Since the
probabilistic approach is sometimes awkward to apply – and is certainly demanding of
computing resources in many instances – the deterministic approach should be used
wherever it provides sufficiently accurate results. Normally, this will be the case when
errors are relatively small and the conditions not extreme. In this section, we offer a brief
review of the deterministic approach. As mentioned above, we begin with Eqs. (1) and
(12). In particular, we consider a collection of primary random variables x and a set of
functions f that lead to derived variables y. These sets have finite dimensions. For a
particular xa, we assume from Eq. (3) that

ya ≈  f(xa) .                                                       (18)

The covariance matrix for y, corresponding to that specific ya, is obtained from the matrix
formula

Vy ≈ T+ Vx T .                                                    (19)

The elements tik of matrix T are given by the expression

tik = (∂fi / ∂xk)a .                                                   (20)

The subscript “a” indicates that these matrix elements are calculated using x = xa. We
have indicated approximate equality in Eqs. (18) and (19) to remind ourselves of the
underlying approximations involved in deriving these formulas and of our interpretation
of “value” as “mean value” and “error” as “standard deviation”. The square roots of the
diagonal elements of Vx and Vy correspond to errors in the various components of x and
y, respectively. The off-diagonal elements provide information on the assumed (in the
case of x) or derived (in the case of y) correlation parameters for these errors. This
approach is popular because it is straightforward and not computationally intensive.
Unfortunately, this approach can lead to incorrect results when the errors become large
and the conditions severe.
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5.  Monte Carlo Simulation

In this section we describe a probabilistic approach that yields results which are
comparable to those provided by the deterministic method discussed in Section 4
whenever one is dealing with modest errors. However, it is technically more appropriate
for handling cases involving large errors. This Monte Carlo simulation method generates
a discrete approximation to the “true” continuous, joint probability density function q for
a set of derived random variables y. The discrete representation of q is obtained by
allocating numerical values obtained from sampling outcomes to pre-defined numerical
intervals that span pre-determined, inclusive ranges of values for the derived random
variables. A tally is kept of the outcomes from all the sampling histories. In this manner,
the appropriate joint probability function q corresponding to a set of derived variables y is
estimated empirically from given probability information p about the primary variables x
and a set of functions f that relate these two sets of variables.

This procedure involves a relatively straightforward extension of the formalism
described for single variables as embodied in Eqs. (9) and (10). A collection of primary
random vectors x1, x2, … , xN is generated by Monte Carlo sampling. The sampling takes
place within pre-defined, inclusive primary parameter ranges in accordance with the
applicable probability distribution for these variables. If error correlations exist between
the components of these vectors, i.e., if Vx is not diagonal, then care must be taken to
assure that existing non-zero correlations are reflected in the sampling procedure.
However, in those specific cases that we have studied during the present investigation it
was assumed, for convenience, that such correlations do not exist and, therefore, that
each component xi of the vector x is governed by an independent probability distribution
pi. Thus, for this special situation

p(x) = Πi pi(xi) .                                                   (21)

A collection of derived vectors y1 = f(x1), y2 = f(x2), … , yN = f(xN) is generated by this
sampling procedure. Depending upon how the Monte Carlo computer program is written,
one can choose to retain all or simply a portion of the resulting information about y
generated by this approach. For the purpose of this discussion, “all” implies a detailed
representation of the probability distribution q for y whereas “ a portion” suggests
information about just a few selected moments of this function [1]. For example, Eqs. (9)
and (10) can be generalized to yield the following expressions for the important low-
order moments of q, namely,

myi ≈ < yi >                                                        (22)

and

(Vy)ij ≈ < yi yj > - myi myj ,                                         (23)
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where (Vy)ij is an element of covariance matrix Vy . The standard deviations are defined
by the formula

syi = [(Vy)ii]½ .                                                    (24)

When there are multiple derived quantities y, a covariance matrix with (very likely) non-
zero off-diagonal elements will be generated regardless of whether or not non-zero error
correlations are assumed for the primary variables x. This outcome is very similar
qualitatively to what emerges from an application of the deterministic approach discussed
in Section 4.

The knowledge gap that exists between possessing information about a few low-
order moments of a probability function and having complete knowledge of the
probability function itself may disappear if it is understood to which family of functions
that distribution ought to belong – based on fundamental considerations or empirical
observations. Many well-known, useful probability distributions, including the normal
(Gaussian) and lognormal functions discussed in Sections 6 and 7, respectively, are
uniquely characterized by their low-order moments. The implications of this fact are
crucial to the present investigation; they will be discussed in later sections of this paper.

Next, we address the following question: How many Monte Carlo sampling
histories N should be followed – and what range(s) of primary random variable space(s)
need to be sampled – in order to generate reliable estimates for the moments of the
probability distribution q that are applicable to the derived random variable(s) and/or to
determine the more detailed shape of q itself? The specific answer to this question
depends intimately on the nature of the random variables x and y (or x and y for the
multivariate situation). However, there is a simple principle that can offer some guidance:
The sampling range(s) and number of Monte Carlo histories that should be considered in
a particular calculation are intimately related. For simplicity, we shall consider the case
of a single, primary random variable x with probability distribution p. This function is
assumed to have a well-defined mean value mx and standard deviation sx, as discussed
above. We shall suppose also that the sampling range is the interval (xmin,xmax). Naturally,
x = mx should fall within this range. Let η be a positive “range” constant such that the
conditions (mx - xmin) ≤ η sx and (xmax - mx) ≤ η sx are both satisfied. Then, we can ask
the following well-defined question: Given η, what is the minimum number of sampling
histories N required in order to insure that this random-variable interval is adequately
sampled? In those situations where the probability distribution p is reasonably well
localized and tends to be “peaked” in shape either near the mean value or the mode of the
distribution (the mode x0 is defined by the condition p(x) ≤ p(x0) for all x in the sampling
range), a very rough guideline is provided by considering the expression

p(mx ± η sx)/p(mx ) < N-1.                                           (25)

The reader should be aware that this formula has no rigorous mathematical justification,
but rather it is based on the experience gained from performing such calculations,
including the many exercises carried out during the present investigation. This formula
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evolved from the notion that when a limited number of Monte Carlo histories are
followed, the odds of encountering values of a particular random variable that are far
removed from the mean value (as measured in units of standard deviation) are very small.
Consequently, there is nothing materially gained by attempting to sample values in this
region of parameter space. By invoking this criterion, one can improve the sampling
efficiency of a Monte Carlo exercise. By the same token, this formula can also be
employed to suggest a reasonable choice for η when, for practical reasons, one is limited
to a particular value of N. For example, if p is a univariate normal probability distribution
– that is symmetric about the mean value and reasonably well localized – we can deduce
quite easily the following suggested sampling-condition relationships by an application of
Eq. (25): η = 1.0 ⇔ N > 2; η = 2.0 ⇔ N > 7; η = 3.0 ⇔ N > 90; η = 4.0 ⇔ N > 2981; η
= 5.0 ⇔ N > 268337; η = 6.0 ⇔ N > 65659969. Clearly, Eq. (25) is not very useful for
small values of η. However, for η > 3.0 – 4.0, it can be a valuable tool in practical
exercises of the Monte Carlo Method. There are other considerations that may lead to
refinement of the process of selecting a sampling range and number of histories to utilize
in Monte Carlo simulations. Statistical accuracy of the desired results is certainly an
important factor. Another technical consideration is the fidelity (true randomness) of the
random-number generator employed for Monte Carlo sampling [1]. For those specific
cases that are discussed in later sections of this paper, extensive studies were carried out
concerning the convergence behavior for various choices of η and N. Most of the
calculations performed during the course of the present investigation employed N = 106

and η = 5.0 as a compromise between desired accuracy and computer time required for
the Monte Carlo simulations. A large number of calculations were also performed using
N = 9 x 106 and η = 8.0 to see if significant differences in outcomes would develop. A
few of the simulation exercises involved even more histories and wider parameter
sampling ranges. In all these latter cases, we found no justification for employing such
large numbers of Monte Carlo sampling histories or sampling ranges this broad in the
simulations performed during this investigation.
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6.  Normal Probability Distribution

For simplicity, we will discuss the univariate case. The Central Limit Theorem
tells us that whenever a particular physical quantity is subjected to a large number of
small, unrelated additive (+ or -) disturbances, then the limiting probability distribution is
normal [1]. For a single random variable x, the probability density function, i.e., the
function that must be integrated to obtain true probability, takes the normalized form

p(x) = (2πµ2x)-½ exp [- (x – mx)2/2µ2x]             ( -∞ < x < +∞),                 (26)

where mean value mx and variance µ2x are defined by Eqs. (4) and (5). Furthermore, in
Section 2 it was pointed out that the Principle of Maximum Entropy suggests that if a
random variable x can assume any value between -∞ and +∞ , and all that we know about
its probability distribution p are estimated values for the mean value and standard
deviation (error), then our best assumption is that p should be a normal distribution
[1,2,3]. These two arguments – along with the fact that the Gaussian function has some
convenient features – have led many scientists to assume that most experimentally
determined physical quantities can be described by normally distributed random
variables.

Is the normal probability function appropriate for the description of real, positive
physical quantities under extreme conditions, e.g., when there are large errors? We will
examine the behavior of the normal probability distribution with the specific intent of
showing that there exist circumstances where its use can lead to serious difficulties in
dealing with inherently positive random variables. The fact that there is a non-negligible
possibility of selecting negative values when performing Monte Carlo sampling exercises
involving the normal distribution – even when the mean value is positive – has been
pointed out recently by Hix et al. [7]. As an example, we suppose that mx = 100. Fig. 1
compares the probability distribution shapes for standard deviations sx = 1, 10, 20, 50,
100, and 150, respectively. This figure demonstrates that there is little possibility of
encountering a negative value for sx ≤ 20. However, for sx ≥ 30 (an error of 30% or
larger), a significant chance develops of encountering a non-physical result in Monte
Carlo sampling when using a Gaussian function. This point is made clear quantitatively
in Fig. 2. It is seen that for the case of 100% error, the chance of obtaining a negative
value of x in sampling is > 15%. For 150% error, over 25% of the sampled values x are
expected to be negative. So, as anticipated, we must conclude that the normal distribution
is inadequate to deal with inherently positive physical quantities that involve very large
errors. A new approach must be sought to circumvent this problem. However, it is
essential that – in the limiting case of relatively small errors – the “correct” probability
function should behave very similarly to the normal distribution and yield comparable
results in sampling exercises.
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7.  Lognormal Probability Distribution

A possible solution to the “negative-value” problem mentioned in Section 6 is to
employ the lognormal function for probabilistic analyses involving inherently positive
random variables and severe conditions [1]. For a single random variable, this
distribution takes the normalized form

p(x) = (2πσ2x2)-½ exp [- (ln x – ν)2/2σ2]     ( x > 0) .                      (27)

The mean value and standard deviation are obtained by using the formulas

mx =  exp[ν + (σ2/2)]                                                (28)

and

µ2x = sx
2 = mx

2 [exp (σ2) - 1] = exp(2ν + 2σ2) – exp(2ν + σ2).                   (29)

Conversely, if the mean value mx and variance µ2x for this distribution are given, then
those parameters ν and σ that characterize the lognormal function can be derived from
the expressions

σ2 = ln [1 + (µ2x/ mx
2)]                                               (30)

and

ν = ln mx – (σ2/2) .                                                 (31)

When the probability function for x is assumed to be lognormal, then the distribution for
y = ln x is normal [1]. The converse is also true. In this sense, these two functions are
conjugates of each other. This fact has been exploited extensively in the present
investigation.

The lognormal function clearly exhibits the desired property of non-negativity
over the variable range for which it is defined (x > 0), no matter how large a standard
deviation is involved. However, we must explore the issue of whether this probability
distribution selection can be justified on more fundamental grounds. It can be shown that
the lognormal probability function is the limiting distribution for an inherently positive
random variable subjected to many positive multiplicative disturbances that vary only
slightly from unity [3]. There is an obvious analogy here to the conditions that generate
the normal distribution, as discussed in Section 6. In fact, a multiplicative disturbance to
a positive random variable x is completely equivalent to an additive disturbance to ln x
[7]. Furthermore, as was mentioned in Section 2, the Principle of Maximum Entropy
[1,2,3] tells us that the optimal choice of a probability distribution for an inherently
positive random variable is the lognormal function when one possesses specific
knowledge only of the mean value and standard deviation. The lognormal function differs
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from the normal (Gaussian) function in that its shape is not symmetric about the mean
value. In fact, the lognormal probability function is inherently asymmetric and attains its
maximum value at the mode x0 given by the formula

x0 = exp(ν - σ2).                                                      (32)

Due to the asymmetric nature of the lognormal distribution mentioned above, the
mode x0 always differs from the mean value mx. This difference will be very small when
the standard deviation is small relative to the mean value. Under these conditions, the
normal and lognormal distributions have very similar shapes. For example, let us suppose
that mx = 100. Fig. 3 compares the probability distribution shapes for standard deviations
sx = 1, 10, 20, 50, 100, and 150, respectively. For small standard deviations, the shape of
the lognormal distribution appears to be reasonably symmetric and is rather similar to
that of a normal distribution. However, as sx increases the lognormal distribution clearly
exhibits its decidedly asymmetric nature. For extremely large standard deviations, the
lognormal function actually approaches Jeffrey’s Prior distribution, as defined in Eq. (8),
except for the very smallest values of x [5]. This is consistent with the intuitive notion
that if the uncertainty is extremely large we obviously possess very little information
about the random variable in question.

Finally, it is interesting to compare directly the shapes of normal and lognormal
distributions with equivalent mean values and standard deviations. A few examples are
shown in Fig. 4. There it is assumed that mx = 100 and sx =  20, 50, 100, and 150,
respectively, for both probability functions. In each of these plots, the two functions are
normalized so that their integral values � p(x)dx are equal.



31

8.  Some Practical Considerations

The preceding sections of this paper offer several qualitative mathematical
arguments for selecting the lognormal distribution function to represent inherently
positive physical quantities. The discussion concerning this distribution that appears in
Ref. [1] mentions that it has been shown definitively to apply to such diverse situations as
the analysis of incomes, the distribution of classroom sizes, and the observed masses or
sizes of biological organisms. A feature that these diverse examples share is the inherent
positive nature of the observable variables. While this accumulated evidence does not
prove rigorously that the lognormal distribution should be applied to positive variables in
all instances, it certainly appears to be a very reasonable assumption from a pragmatic
point of view. Therefore, we shall assume, for present purposes, that an inherently
positive primary random variable x is indeed distributed according to a lognormal
function p, provided that our information about that variable is limited to knowledge of
the distribution mean value and standard deviation. By “primary” we mean a random
variable that represents a directly measured physical quantity.

To pursue this matter further, we pose the following two questions:  1) If x > 0 is
accepted a priori to be distributed according to a lognormal probability function p, and y
and x are related through a well-defined, continuous and differentiable function f,
according to Eq. (1), in such a manner that y > 0, should we expect the probability
distribution q for y to be lognormal?  2) If so, could this result be generalized to include
situations involving multiple variables? Since the statistical nature of x is specified, along
with knowledge of the function f that links x to y, the probability distribution q for y can
certainly be determined directly – if not analytically, then empirically by Monte Carlo
simulation. A conservative approach would be to assume that it is unreasonable to expect
a priori that the true probability distribution q for y should be identical to a lognormal
function, or equivalently, that the probability distribution for ln y should be identical to a
normal (Gaussian) function. In the present investigation, we have explored the extent to
which the true probability function q for a derived random variable y – as deduced by
Monte Carlo simulation – resembles a lognormal function or, equivalently, how well ln y
can be described by a normal distribution. Experience gained from extensive numerical
studies we performed during the course of this investigation appears to confirm that q
need not be exactly equal to a lognormal function. However, the actual distributions can
usually be approximated quite well – for practical purposes – by lognormal functions,
provided that the parameters (distribution moments) are determined properly (Sections 9
– 11).

The present investigation relies heavily on Monte Carlo simulation. Therefore, the
first step we took in this project was to demonstrate that our selected Monte Carlo
simulation procedures would be able to reproduce a particular sampling distribution to a
degree of precision limited only by the coarseness of the chosen interval structure and the
selected number of sampling histories N. We employed well-known numerical methods
that are described in the literature to generate a sequence of random numbers and thereby
replicate the selected probability distribution functions [1,8]. Actually, two distinct
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random-number-generator algorithms and approaches to probability-distribution
replication were implemented in various computer codes used for numerical studies
reported in this work. Both of these approaches yielded nearly identical results (within
the expected limits of numerical precision) for equivalent problems. Consequently, no
distinction between them is noted in the present discussion. Our first test sought to
determine if a simple lognormal distribution with mean value mx = 10 and standard
deviation sx = 5 (50% error) could be reproduced well by Monte Carlo simulation. This
example reflects a relatively moderate rather than a severe error condition. In this
exercise, a modest number of histories, namely, N = 105, were traced. The sampling
results were allocated to 30 intervals of equal width in the variable x spanning a range of
that variable corresponding to η = 3.0, as discussed in Section 5: xmin = 2.168 to xmax =
36.898. The results are shown in Fig. 5. Tallies of events allocated to these intervals from
sampling are plotted in the form of a histogram. A smooth curve that represents the actual
considered lognormal probability function p – suitably normalized so that � p(x)dx =
100000 – is also plotted in this figure. It is clear that the agreement is excellent. However,
further numerical tests of this nature indicated that when the standard deviation is very
large a comparison of this sort is much more difficult to carry out for the lognormal
function. Its inherent asymmetry – which is manifested in a rapid variation of p with x as
x approaches zero – makes it difficult to replicate the shape of this function using a
histogram. This can only be done if a very fine interval structure is selected, a large
number of Monte Carlo histories are followed, and the computer that is employed for the
calculations is capable of providing excellent numerical precision. Our concern with the
constraints that these stringent requirements impose led us eventually to pursue a
different approach, namely, to validate that a derived quantity y is represented well by a
lognormal distribution by instead verifying that ln y is described well by a normal
distribution. We learned that this latter approach avoids many of the numerical
difficulties encountered in working with a highly asymmetric lognormal distribution
directly. Unambiguous transformations between the parameters of conjugate normal and
lognormal probability distributions can be performed using the formulas that appear in
Eqs. (28) - (31).



33

9.  Application to Radioactive Decay

For the storage and disposal of radioactive materials – as well as for
decontamination purposes – it is important to be able to predict residual radioactivity
levels reliably after elapsed times corresponding to many decay half lives. The decay of a
single radioactive species is governed by the formula

A = A0 exp(-λt) ,                                                   (33)

where t is time, λ is the decay constant, A0 is the activity at time zero, and A is the
activity after elapsed time t. The decay constant λ is related to the mean life τ and half
life t½ by the expression

λ = 1/τ = (ln 2) / t½ .                                                 (34)

From Eq. (17) and the related discussion in Section 3, it is evident that the error
amplification factor at time t in this particular situation can be deduced from the
expression

sA / A ≈ λ t (sλ / λ) .                                                         (35)

Thus, the error amplification factor in this instance is λ t.

In this section we will consider – as an example – the decay of the radioisotope
53V by β- emission. There is uncertainty associated with the various reported values of
half life and, therefore, in the decay constant λ for this radio-nuclide. An evaluation by
Browne and Firestone suggests 96.6 ± 2.4 seconds (2.5% error) for the half life [9].  A
comparable evaluation published by Tuli recommends 96.0 ± 2.4 seconds (2.5% error)
[10]. These two results are quite close. However, a recent evaluation by Smith and
Fessler – that reflects their new experimental data as well as existing results – suggests a
rather different result, namely, 92.4 ± 1.1 seconds (1.2% error) [11]. Although these do
not appear to be large differences, the effect of even small differences can be magnified
significantly if the elapsed time is large. We have examined the impact of these
differences in ascertaining the residual activity at t = 3600 seconds (1 hour) using both
deterministic calculations and Monte Carlo simulations, as described in Sections 4 and 5,
respectively. Two distinct sets of values for λ and its error were considered. The error
amplification factors calculated using Eq. (34) and the half-life values given above are in
the range 26 to 27.

Deterministic calculations were carried out in the manner described in Section 4.
The Monte Carlo simulation analyses followed procedures that are discussed in Section
5. Only the error in λ was considered; no error is assigned to A0. Mean values and
standard deviations were estimated first for ln A. They were then used to derive
corresponding mean values and standard deviations for A under the assumption that the
natural logarithm of the residual activity is normally distributed while the residual
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activity itself is described by a lognormal function. The requisite transformation formulas
are given in Eqs. (28) and (29). In order to test the validity of this approach, discrete
representations of the probability functions for the natural logarithms of the residual
activities were generated by Monte Carlo simulation. These shapes were then compared
to normal distributions applicable to ln A with mean values and standard deviations equal
to results obtained directly from Monte Carlo simulation using Eqs. (9) and (10). The
outcome from this analysis is illustrated in Fig. 6 for the case λ = 0.007220. While the
agreement is not perfect – as could be anticipated from the discussion in Section 8 – it is
nevertheless remarkably good over a range of nearly three decades for the probability
density function. Consequently, it is reasonable, for most practical purposes, to conclude
that the probability density function (PDF) for residual activity A can be described quite
well by a lognormal probability distribution function.

The numerical results obtained from this analysis are provided in Table 1. It is
apparent that the deterministic and Monte Carlo calculations yield noticeably different
mean values for the derived quantities under these severe conditions. There are also very
significant differences between the residual activities determined by either method using
the evaluated half-life value of Browne and Firestone [9] (also supported by Tuli [10])
and that obtained from the data of Smith and Fessler [11]. Two conclusions emerge from
this particular analysis: 1) Precise knowledge of radioactive decay constants is essential
when accurate determinations of residual radioactivity – following long decay times
(many half lives) – are sought. This is often a requirement in satisfying stringent health
and safety criteria imposed by regulatory agencies, e.g., in long-term nuclear waste
storage applications. 2) Conventional deterministic calculations can lead to noticeable
systematic biases under extreme conditions such as those found in this exercise. It is
evident from Table 1 that the biases in the present example are fairly modest in
comparison to the corresponding derived standard deviations. As mentioned earlier, these
standard deviations account for random error in the determination of residual
radioactivity. Nevertheless, it seems worthwhile under extreme conditions to avoid
systematic bias effects in the derived radioactivity values by employing the suggested
Monte Carlo approach rather than resorting to erroneous deterministic analysis.
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10.  Application to Radiation Shielding

The provision of adequate shielding is necessary to assure the safe handling and
storage of radioactive nuclear materials. The assumption that attenuation of penetrating
radiation in shielding materials obeys a strict exponential law represents a considerable
oversimplification of the physical problem, in many instances. It fails to be exact because
it ignores variations in radiation intensity and energy spectrum distortion effects due to
scattering and other physical phenomena (see below). Nevertheless, the exponential
assumption is sometimes invoked for the purpose of providing qualitative estimates of
material requirements for shielding against penetrating neutral (uncharged) radiation such
as photons and neutrons. In the present example, it is assumed that the attenuation in lead
of 662-keV gamma rays emitted by the decay of 137Cs is governed approximately by the
formula

I ≈ I0  exp(- n σT x),                                               (36)

where I0 is the unshielded source strength, I is the effective exterior source strength with
shielding material included (lead in this example), n is the atomic density (atoms/cm3) of
lead, σT is the total cross section for 662-keV photons in lead, and x is the thickness of
lead shielding. The structure of  Eq. (36) clearly resembles that of Eq. (33). The photon
cross section σT = 38.59 barn/atom is extracted from tables in Storm and Israel [12]. The
atom density n = 3.299 x 1022 atoms/cm3 is deduced from the mass of the lead atom given
by Tuli [10] and the mass density of lead tabulated in CRC Handbook of Physics and
Chemistry, 67th Edition [13]. The parameter ΣT = n σT = 1.273 cm-1 is often referred to as
the macroscopic total cross section. It is assumed for present purposes to have an error of
5%; no error is assigned to I0. The error amplification factor described in Section 3 can be
derived from the equation

sI / I ≈ n σ x ( sσ / σ ) = Σ x (sΣ / Σ).                                      (37)

in the present shielding application. For convenience σT has been replaced by σ and ΣT
by Σ in Eq. (37). Thus, in this instance the error amplification factor is either n σ x or Σ x,
depending on whether one chooses to attribute error to the microscopic cross section σ or
the macroscopic cross section Σ. The latter approach combines the uncertainty in density
and microscopic cross section and is probably is a more reasonable approach.

Let us suppose that the 137Cs source in question is confined to a small sealed
capsule (nearly a point source) and that it has an unshielded strength I0 = 100 Ci.
Furthermore, we stipulate that this capsule be stored in a lead container (lead pig) such
that the active material is completely surrounded by 10 inches (x = 25.4 cm) of lead.
What will be the effective source strength for emission of un-scattered gamma rays from
this container? First, we note from an application of Eq. (37) – using the parameters
given above – that the error amplification factor is ≈ 32. This suggests that an error of 5%
in the cross section could be amplified to ≈ 160%! To obtain more definitive results, we
derived the effective shielded source strength I by both a deterministic calculation – as
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described in Section 4 – and by Monte Carlo simulation – as discussed in Section 5. The
Monte Carlo simulation was carried out using Eqs. (9) and (10), as described in Section
9. The deterministic approach yielded a transmitted radiation intensity comparable to that
from an equivalent 0.9089 pCi (162%) source while the Monte Carlo simulation
produced a mean value comparable source strength of 3.358 pCi (127%). The respective
standard deviations (in percent) are shown in parentheses. The effective source strengths
determined by these two methods differ by a factor of 3.695 for the severe conditions
posed in this example. The Monte Carlo simulation also generated a discrete empirical
probability distribution for ln I, as described in Section 9. We tested the assumption that
the natural logarithm of I is normally distributed by comparing the discrete probability
distribution for ln I with an analytical normal probability density function (PDF). The
results are shown in Figure 7. Although these shapes are observed to agree reasonably
well over two decades of the probability function, there are some noticeable differences
for smaller probability values. The overall agreement here is not as good as was
encountered in the example given in Section 9. However, this is not surprising since the
present example involves considerably larger errors and very severe conditions. Still – for
most practical purposes – it appears to be acceptable in this specific case to assume that
the probability density function that describes the transmitted radiation intensity can be
approximated adequately by a lognormal function.

Unlike the case of radioactive decay that is discussed in Section 9, there is good
reason, in shielding, to question the fundamental validity of the pure exponential
attenuation model represented by Eq. (36). In the transport of penetrating, uncharged
radiation (e.g., photons and neutrons) through matter, the exponential model over-
estimates the attenuation (underestimates the transmission) by amounts that become
increasingly important as the thickness of absorbing material increases. There are also
significant spectral alterations that occur due to scattering and other physical phenomena.
This is a situation where the principle culprit that leads us to calculate the wrong answer
is not related to non-linearity or probability effects but rather to fundamental
inappropriateness of the physical model. It is well known that there is a radiation “build
up” effect that leads to an enhancement of penetrating radiation transmission relative to
predictions from the exponential model [14,15]. For example, it has been shown that for
copper and steel one can anticipate buildup factors approaching 3 for 6-MeV gamma rays
and material thickness around 20 cm [15,16]. Various analytical formulas have been
suggested for addressing this problem, and these have been included in a variety of
radiation transport computer codes. Today, it is generally accepted that the best approach
for dealing with radiation transport problems is Monte Carlo simulation. Only in this way
is it possible to take into consideration detailed changes in the spectral characteristics of
transmitted radiation that have a profound effect on calculations of physical quantities
that really matter, such as energy deposition and biological dose. It should be noted that
the Monte Carlo technique is potentially fully compatible with the probabilistic approach
to uncertainty that is being considered in this report.

In the present study we chose not to investigate models of radiation transport
more realistic than exponential attenuation. One reason for this is that the general
approach would be the same; the mathematics would simply be more complicated.
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Perhaps a more important reason is our belief that reliable determinations of radiation
transport through materials require use of either sophisticated deterministic, multi-group
transport codes or Monte Carlo simulation. If deterministic codes are used, one needs to
be aware of the potential for systematic error that may result from those effects discussed
in this report, if the data uncertainties are large. With Monte Carlo simulation it is
possible, in principle, to avoid this problem. However, existing Monte Carlo codes tend
not to include a capability for dealing with error information and, thus, would likely be
equally susceptible to the problem.
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11.  Application to Astrophysical Nuclear Reaction Rates

A very interesting and challenging example of dealing with large errors and
severe conditions involves the determination of nuclear reaction rates that are employed
for astrophysical network calculations of stellar nucleosynthesis [7,17–21]. In fact, our
interest in this application was the principal motivating factor that led to undertaking the
present investigation.

A stellar nuclear reaction rate R is defined as the energy integral of the product of
a normalized Maxwellian-Boltzmann spectrum of interaction energies, φ, and the reaction
cross section, σ, i.e.,

R = R(T) = � σ(E)φ(E,T) dE ,                                             (38)

where T is the stellar temperature that defines the spectrum φ. Since the reaction cross
section can be comprised of several components, so can the reaction rate. For present
purposes we will consider reactions initiated by charged particles such as protons or
alpha particles. These processes tend to have very small cross sections at the relatively
low particle energies (on the nuclear scale) typically encountered in stellar environments.
Furthermore, the cross-section errors tend to be quite large because these cross sections
are difficult – perhaps in many cases impossible – to measure directly at low energies.
Although these reaction rates may be very weak, their influence on stellar evolution can
be profound owing to the enormous masses of stars. Generally, the cross sections need to
be estimated from nuclear model calculations or deduced indirectly from auxiliary
information about nuclear structure or the properties of resonance interactions. Typically,
we can express the total reaction rate reasonably well as a sum of terms, each
corresponding to a conceptually distinct physical process:

R ≈ Rsub + Rres + Rcomp + Rdir .                                       (39)

Rsub identifies a contribution from bound states in the compound-nuclear system of
interacting particles at excitation energies near the incident-particle separation energy.
Rres is the contribution from discrete low-lying unbound resonances of the compound-
nuclear system. It is often the dominant term of Eq. (39), especially for moderate values
of stellar temperature. Rcomp is the compound-nucleus component corresponding to
higher-excitation, unresolved resonances. It is usually estimated from Hauser-Feshbach
calculations, and it can become the dominant term for very high stellar temperatures.
Finally, Rdir is the component due to direct reactions in which the colliding particles do
not first form a compound nucleus. This contribution is generally relatively small and it
tends to be smooth as a function of energy. The formula given in Eq. (39) is approximate
in the sense that it is not possible to isolate the various labeled components completely
from each other due to interference effects. Still, Eq. (39) provides a reasonably good
model for handling most stellar applications. In the present example, we will assume that
the reaction rate is dominated by the component due to discrete, unbound resonanances,
i.e., that R ≈ Rres . Furthermore, it is assumed that the spacing between these resonances
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is considerably larger than the widths of the individual resonances, i.e., D/Γ >> 1 [17].
Under these conditions we obtain the expression

R ≈ (1.54 x 105) (µ T9)-3/2 f �i Si exp(-11.605 Ei / T9) ,                      (40)

where R is the reaction rate in units of cm3/second/mol, T9 is the stellar temperature
expressed in units of GK (1 GK = 109 Kelvin), µ is the reduced mass of the interacting
particles in amu, Ei is particle interaction energy corresponding to the ith resonance in
MeV, and Si is the corresponding resonance strength factor in eV [17,18,21]. The
indicated sum extends over all the considered resonances. The factor “f” is called the
electron-screening factor. It takes into account modification of the effective potential for
interaction of two charged nuclear particles due to the presence of an electron cloud
around the nucleus. For present purposes we assume f = 1 for convenience, with no
relevant loss of generality.

Until recently, information on stellar nuclear reaction rates was generally
employed only in deterministic calculations of stellar evolution and the synthesis of
elements. Lately, a group at Oak Ridge National Laboratory has been exploring the use of
Monte Carlo simulation as a tool in performing these calculations [7]. These workers
incorporated existing reaction-rate information that was obtained mainly from Hauser-
Feshbach calculations, e.g., from Rauscher et al. [22] – and assumed errors of 50% – in
their investigation. These values served as parameters for lognormal probability
distributions that they utilized in Monte Carlo analyses. They found out that the elemental
abundances derived from such calculations tend to have probability distributions that also
can be represented reasonably well by lognormal functions. This, of course, is consistent
with findings that have emerged from the present investigation, as indicated in earlier
sections of the present paper.

In this section, we employ both hypothetical and realistic nuclear reaction data to
investigate the degree to which lognormal functions can be used to describe reaction-rate
probability distributions that have been derived numerically from more fundamental
information – in this case from lognormally distributed resonance parameters –
according to Eq (40).

First, we address the error amplification issue – as described in Section 3 – applied to
astrophysical resonance reaction rates. The formula that is comparable to Eq. (12) in the
present situation – as long as the errors in the resonance parameters are assumed to be un-
correlated – is

(sR / R)2 ≈ �i [AEi
2(sEi / Ei)2 + ASi

2(sSi / Si )2 ] .                              (41)

It relates the fractional error in R to the fractional errors in the resonance energies and
strengths through conventional error propagation using Eq. (40). Eq. (41) differs from Eq.
(12) in that it indicates the total error in R should be computed by combining all partial
errors in quadrature [1]. In this formula, AEi and ASi are the partial-error amplification
factors associated with each indicated variable and “s” denotes standard deviation.
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To demonstrate the severity of the error amplification effect under certain
circumstances, we examined a simple, hypothetical example that involves just two
resonances. The chosen resonance parameters are: E1 = 0.194 MeV and sE1 = 0.003 MeV
(1.5% error); S1 = 4.8 x 10-7 eV and sS1 = 1.6 x 10-7 eV (33.3% error); E2 = 0.305 MeV
and sE2 = 0.004 MeV (1.3% error); S2 = 3.7 x 10-5 eV and sS2 = 1.85 x 10-5 eV (50%
error). Specific values of AEi and ASi (i = 1,2) for selected stellar temperatures T9 are
given in Table 2. A great deal about the nature of this hypothetical physical problem can
be learned from an examination of Table 2. Since the reaction rate is a linear function of
the resonance strengths, it should be anticipated – from the discussion in Section 3 – that
the corresponding amplification factors will be less than unity, i.e., ASi ≤ 1. This point is
clearly evident from an inspection of Table 2. The actual magnitude of ASi depends on
the weight given to the individual resonance by the Maxwell-Boltzmann distribution
function of interacting-particle energies. Clearly, this weighting depends on stellar
temperature. As we might have suspected, the only error amplification factors greater
than unity correspond to the resonance energies, i.e., to AEi . Again, the effect is strongly
dependent on stellar temperature. When the resonances are widely spaced compared to
their individual widths, only the lowest-energy resonances are capable of introducing
large error amplification. From this result we can conclude that it is very important to
determine the energies of the lowest unbound resonances as accurately as possible in
order to be able to obtain reliable estimates for the reaction rates at low stellar
temperatures.

Next, we examine a realistic problem in nuclear astrophysics in some detail.
Consider the charged-particle reaction 31P(p,γ)32S. This reaction is known to play an
important role in nuclear hydrogen burning via the rp-process that occurs during a nova
outburst or the cataclysmic death of a large star by a supernova explosion [19]. Table 3
lists the parameters for 46 known unbound resonances of this reaction with measured or
estimated strengths up to proton energy Ep ≈ 2 MeV. These data were collected from a
1990 evaluation by Endt [23], from 1993 experimental results at low energy by Iliadis et
al. [24], and from the data compilation for this reaction by Smith and Daly [25]. The
absolute resonance-energy errors were assumed to be 0.002 MeV in those cases where
they are not given in the original published sources. The resonance strength errors, when
not given explicitly, were assumed to be 30% except in those instances where the
resonance strength was indicated to be an upper bound. Then, a 50% error was assumed.

It is instructive to examine the effects of varying stellar temperature by
performing deterministic calculations for this reaction using only the five lowest-lying
resonances listed in Table 3. Individual contributions from each of the first five terms in
Eq. (40) are plotted in Figure 8 in bar-graph form. Separate plots are provided for nine
selected values of stellar temperature. Only the first resonance contributes significantly to
the reaction rate at T9 = 0.02 GK, and hence at lower temperatures as well. Since Eq. (40)
is dominated by a single exponential term under these conditions, we can anticipate that
the present example will exhibit a probabilistic behavior similar to that described in
Sections 9 and 10. At T9 = 0.04 GK, the second resonance begins to have some influence.
By T9 = 0.1 GK, the second resonance is by far the dominant contributor to the overall
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reaction rate. Since it is a relatively strong resonance, its influence continues to be felt up
to T9 = 0.5 GK. The third resonance is very weak and appears so close in energy to the
second resonance that it has hardly any influence at the considered temperatures. For T9 >
0.5 GK, the fourth and fifth resonances have the predominant influence on the reaction
rate. In the broad temperature range between 1 and 10 GK there is only a modest
variation in the relative contributions from the fourth and fifth resonances. The effect
described here is sometimes referred to as the Gamow-Peak effect [17,18]. It comes
about because of the dramatic variation in the shape of the Maxwell-Boltzmann energy
distribution function with stellar temperature, particularly for lower temperatures. This
analysis illustrates an important consideration for astrophysics, namely, that the impact of
a particular charged-particle nuclear reaction in a stellar environment can depend very
strongly on the properties of just a few of its strongest and/or lowest-lying unbound
resonances.

Suppose that the reaction rate R is dominated by just a single resonance.
Furthermore, let us consider ln R rather than R itself. Then, from Eq. (40) we can deduce
the expression

ln R ≈ C(T9) + ln S -11.605 E / T9 ,                                       (42)

where C(T9) is a function of stellar temperature. However, C is not a random variable so
it contributes no error to ln R. In Eq. (42), only S and E are random variables with
potential for error. If we assume that the resonance strength, S, is governed by a
lognormal distribution, then ln S should be normally distributed. The resonance energy E
is also governed by a lognormal distribution. Let us consider two extreme cases as
defined by the stellar temperature. If T9 is relatively large, then the error in ln R will be
dominated by the error in ln S. Hence, its probability distribution can be approximated by
a normal (Gaussian) function. However, if T9 is very small, ln R will be dominated by the
term involving resonance energy, E. Then, its probability distribution can be
approximated by a lognormal function. Since the error in E is generally quite small (a few
percent at most), this lognormal distribution will be very close – if not exactly equal to –
a normal distribution (Section 7). So, for all practical purposes we can treat this
distribution as normal. This line of reasoning leads us to the conclusion that ln R should
be approximated quite well by a normal distribution in most circumstances. We shall
demonstrate that this is indeed the case later in this section by means of detailed Monte
Carlo simulations.

Several computer codes were developed specifically for this project in order to be
able to carry out both deterministic calculations (Section 4) and Monte Carlo simulations
(Section 5) of 31P(p,γ)32S reaction rates at 29 selected stellar temperatures that span a
range of nearly three decades (T9 = 0.011 – 9.00 GK). The Monte Carlo analyses were
performed mainly using natural logarithms of reaction rates for the reason mentioned in
Section 8. Conversion to actual reaction-rate information was accomplished using Eqs.
(28) and (29), in the manner described in Sections 8 – 10.
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Table 4 presents the results obtained from both deterministic calculations and
Monte Carlo simulations for a limited collection of stellar temperatures in order that the
nature of the error correlation patterns can be exhibited more conveniently. Complete sets
of the 29 reaction-rate results calculated by both methods are presented in Table 5. Plots
of ratios of these results are shown in Fig. 9. There are several points to be made
concerning the results presented in these two tables and the figure. It is evident that the
fractional errors grow progressively larger as T9 becomes smaller. This reflects the error
amplification phenomenon discussed in Section 3. Similarly, the deviations between
results generated by deterministic calculations and corresponding ones that were deduced
from Monte Carlo simulation become steadily more pronounced as the stellar
temperature drops. It is interesting to observe, however, that the correlation matrices
obtained by these two distinct methods – while differing in fine detail – are qualitatively
similar. These correlations are governed by the structure of Eq. (40). Although the Monte
Carlo simulation exercises focused mainly on natural logarithms of reaction rates, it is
easy to demonstrate that the correlation pattern generated for a set of values and their
corresponding set of natural logarithms are the same.

Detailed probability distributions for the natural logarithm of reaction rate were
also generated by the Monte Carlo method for several stellar temperatures in the range T9
= 0.011 – 9 GK using the methods discussed in Sections 8 – 10. The results for T9 =
0.011 and 0.1 GK are shown in Fig. 10. It is evident from Fig. 9 that the region of stellar
temperature T9 ≤ 0.1 involves severe conditions, as defined in the present context. The
linear and semi-logarithmic plots shown in Fig. 10 demonstrate that the empirical
probability distributions generated by Monte Carlo simulation for the natural logarithms
of resonance reaction rates can be represented very well by normal probability functions
with mean values and standard deviations derived by Monte Carlo simulation (Section 5).
Good agreement is apparent over three to four decades in the value of probability density.
Similar good agreement was observed between empirically derived probability
distributions for natural logarithms of reaction rates and equivalent normal probability
functions at the other temperatures we investigated. This outcome supports the idea that
the probability distributions for the reaction rates themselves should be described well by
lognormal functions. It is also consistent with the observations made by Hix et al. in a
report on their earlier work at Oak Ridge National Laboratory [7].

Since the agreement between the results obtained deterministically and by Monte
Carlo simulation is generally quite good, except possibly at the lowest stellar
temperatures, one might question whether these differences in reaction-rate values are
really that significant. In response to this objection, we point out that a thorough
understanding of these low-temperature environments is very important for the accurate
analysis of many important stellar processes, including nova outbursts. Consequently, the
reaction rates applicable to this temperature regime need to be determined accurately and
represented properly. One of the great challenges of nuclear astrophysics is that of
acquiring reaction-rate data of sufficient quality to enable relatively low-temperature
stellar conditions to be modeled reliably.
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Theoretical nuclear astrophysicists must deal with a large number of stellar
reaction rates spanning wide ranges of stellar temperatures when they perform stellar
evolution network calculations. Consequently, there is a strong motivation to represent
this reaction-rate information in the form of parameterized functions of stellar
temperature in order to reduce the size of input data files used by the stellar modeling
codes and to enhance flexibility. One popular scheme for condensing reaction-rate
information has been developed by Thielemann and his collaborators [26]. Their
approach is to represent the nuclear reaction rate R versus stellar temperature T9 by the
empirical seven-parameter function

R ≈ exp [a1 + a2T9
-1 +a3 T9

-1/3 + a4T9
1/3 + a5T9 + a6T9

5/3 + a7 ln(T9)],           (43)

 or, equivalently,

ln R ≈ a1 + a2T9
-1 +a3 T9

-1/3 + a4T9
1/3 + a5T9 + a6T9

5/3 + a7 ln(T9),              (44)

where the parameters ai are selected so that this formula will yield good agreement to
reaction-rate values derived by various methods, including those discussed in this report.
Tables of parameters ai have been produced by other workers using this scheme and they
are available from the literature [26,27]. This concept is appealing because it offers the
possibility of calculating a particular reaction rate for any desired stellar temperature
within the validated fitting range by using a simple analytic function that involves just a
few parameters. Such determinations can be made quickly “on the fly” during stellar
evolution modeling calculations. There are two problems associated with the
conventional application of this technique, based on findings from the present
investigation: First, reaction-rate uncertainties are generally not considered. Second, we
have demonstrated in this work that it is misleading to refer to a “unique” reaction rate
for a specific stellar temperature, T9 , at the low stellar temperatures where nuclear data
uncertainties tend to be large. Instead, there is a necessity to resort to Monte Carlo
simulation and the use of probability distributions to represent various reaction rates.

It is obvious from an inspection of Eq. (44) that ln R is a linear function of the
parameters ai. We suggest that the method developed by Thielemann et al. [26] can also
be applied successfully in dealing with circumstances involving large errors and severe
conditions provided that we include the errors and that the fitted quantities are interpreted
as parameters of probability distributions rather than as deterministic values. The
procedure is as follows: A collection of mean values and standard deviations (which we
shall refer to below as “errors”) is generated by Monte Carlo simulation for the
distributions of ln R using Eq. (40). These values correspond to various selected stellar
temperatures that span the range of interest. For convenience, we denote the mean values
to be fitted by < ln R >data and the corresponding errors by (Error ln R)data. Eq. (44) is
fitted rigorously to the < ln R >data values by applying the linear least-square method with
data-point weighting included [1,6]. We assume here, for simplicity, that these errors are
not correlated. Then, individual points to be fitted are weighted by the inverse squares of
their errors. Of course, the least-squares methodology allows for the error correlations
that are provided automatically by Monte Carlo simulation to be included if that should
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be desired. The error values resulting from Monte Carlo simulation must also be fitted.
Lacking an obvious alternative fitting function, we have assumed that Eq. (44) can also
be used for this purpose. However, in this instance it is not possible to weight the error
values in an objective manner for the fitting procedure since the notion of an “error in the
value of an error” is meaningless. To circumvent this problem, we assume arbitrarily that
the errors to be fitted can be weighted equally on a percentage basis for the least-squares
fitting exercise. From the fitted curves for < ln R > and its error, values for the parameters
describing the lognormal probability distributions for reaction rate R can be calculated for
any value of T9 within the validated fitting range by applying Eqs. (28) and (29) –
provided that it is assumed that ln R is normally distributed.

To test this approach, we used Eq. (44) to fit mean values and errors
corresponding to the distributions of ln R for the 31P(p,γ)32S reaction at 29 stellar
temperatures, as described earlier in this section. The best-fit solution parameters, ai ,
obtained from the mean-value fitting exercise are given in Table 6 along with the
parameter errors and error correlations. A reasonably good fit to these data was obtained,
as is demonstrated by a least-squares fit solution with chi-square per degree of freedom
equal to 1.827 [1,6]. Of course, it was anticipated that a decent fit could be achieved since
the functional form of Eq. (44) was developed by Thielemann et al. [26] explicitly for the
purpose of fitting reaction-rate data of this nature. A detailed comparison of the mean-
value data points, < ln R >data , and corresponding values, < ln R >fit , derived from the
fitted curve is provided in Table 7, and a corresponding quality-of-fit indicator is plotted
in Fig. 11. This indicator is obtained by dividing the difference between the data point
and its corresponding value from the fitted curve by the error in the fitted data point; it
can be either positive or negative (if not zero). An indicator value of unity implies that a
data point and corresponding value from the curve differ by an amount exactly equal to
the data point error. It is evident that there is a systematic trend to the deviations; this is
not surprising given that Eq. (44) is an empirical formula. Nevertheless, it is seen that
only 11 of the 29 fitted data points deviate from the curve by more than their error (one
standard deviation). This is reasonably consistent with the fact that ≈ 32% of these data
points should be expected to differ by more than one standard deviation from the curve if
their scatter were governed by purely random statistical effects (see Table 7.1 of Ref.
[1]). We also generated a least-squares fit of Eq. (44) to the error information, (Error ln
R)data , given in Table 7, although there was no a priori reason to expect that this formula
would be applicable to a fitting exercise for which it was not designed. To satisfy data
input requirements for the least-squares procedure that was used, dummy “errors” of 10%
were assigned to each of the error values to be fitted. This 10% error figure was selected
after some trial and error. This led to a least-squares fit solution with chi-square per
degree of freedom parameter equal to 1.403. This is a very respectable outcome. A
detailed comparison of the error data points, (Error ln R)data , and values from the fitted
curve, (Error ln R)fit , is provided in Table 7 and a corresponding quality-of-fit indicator
is plotted in Fig. 11. This indicator is defined in the manner described above. Again,
some systematic effects are observed for the deviations. However, only 5 of the fitted
data points deviate from the curve by more than 10%. These two fitting exercises
demonstrate that it is possible to represent detailed information about reaction-rate
probability distributions quite adequately – over a range of stellar temperatures that spans
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nearly three decades (T9 = 0.011 – 9 GK) – by using the formalism of Thielemann et al.
and only 14 parameters (seven for the mean values and seven for the errors).

Astrophysicists are interested in information on reaction rates, R, for their stellar
evolution calculations. Results for ln R are not directly useful. Of course, it would be
perfectly reasonable to provide information only for ln R and then convert this to
information for the equivalent R during the stellar evolution calculations, “on the fly”,
utilizing Eqs. (28) and (29). We have explored this issue in the context of the present
example that deals with 31P(p,γ)32S reaction rates. Values of < ln R >data and (Error ln
R)data were converted to equivalent < R >data and (Error R)data using Eqs. (28) and (29).
The same procedure was used to convert corresponding values of < ln R >fit and (Error ln
R)fit to equivalent < R >fit and (Error R)fit . The results from this analysis appear in Table
8. Quality-of-agreement indicators that quantify these differences are plotted in Fig. 11.
Although there are again some systematic effects evident in this comparison, the overall
agreement is quite good. It is seen that the differences between values derived from
Monte Carlo simulations and those obtained from the fitting exercises exceed their errors
for only 10 of the 29 plotted data points.
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12.  A Final Look at Errors and the Effects of Non-linearity

There is a common characteristic to the results obtained from analyses of the examples
given in Sections 9 – 11. The mean values of the derived quantities obtained by Monte Carlo
simulation using lognormal distributions for the primary random variables tend to be larger than
the corresponding values obtained by deterministic substitution. The larger the error – or the
more extreme the conditions encountered – the larger the observed biases. This raises a question
as to whether this is a universal effect or whether it depends in a specific way on the nature of the
probability distribution and/or non-linear function under consideration.

Upon closer examination of each of the examples considered in Sections 9 – 11,
particularly in the extreme limits, we see that basically we are dealing with functions of the form

y = f(x) = exp(- a x)    (x > 0; a > 0).                                   (45)

In this case,

< y > = � f(x) p(x) dx.                                                 (46)

There is no particular need to generate an explicit probability distribution for y [1]. Following the
discussion in Section 3, it is evident that the error amplification factor is “ ax ” for this function.

It is possible to compare values of < y > and y = f(mx) – where mx = 6 is the mean value
of the lognormal probability distribution p(x) that applies to the primary random variable x – by
using a spreadsheet program for the analysis. There is no need in this instance to resort to Monte
Carlo simulation to evaluate Eq. (46), although this approach could, of course, be applied and it
would lead to the same result. In the upper half of Table 9, values for the ratio of < y > to f(mx)
are given for a = 1 and various values of the standard deviation sx in x equivalent to 1, 2, 5, 10,
20, 50, and 100% error. The value a = 1 does not constitute an extreme condition, so this exercise
tests the effects of error size on the results. However, it should be noted that the error
amplification factor is 6 for this part of the table. The lower half of Table 9 gives similar results
for the case where sx corresponds to 5% (a very modest error) but a = 0.1, 0.2, 0.5, 1, 2, 5, and
10. The larger values of “a” correspond to extreme conditions. In this part of the table, the error
amplification factor ranges from 0.6 to 60. It is clear from the results given in this table that there
is a bias toward < y > being larger than f(mx). This bias becomes insignificant when the error is
small and the conditions are not extreme. Would the effect be the same if a Gaussian probability
distribution were used rather than the lognormal distribution? Due to the fact that there is a
significant probability of encountering negative (non-physical) values of x for Gaussian
distributions with large errors, it is really not meaningful to explore this possibility any further.

Instead, we examine what happens if a different non-linear function is involved. For this
purpose, we consider the function
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y = f(x) = exp(-a / x)     (x > 0; a > 0).                                   (47)

The function indicated in Eq. (47) behaves quite differently from the function defined by Eq.
(45). Following the discussion in Section 3, it is evident that the error amplification factor is “
a/x ” for this function. For small x the values of y become small while for large x the value of y
approaches unity. This is just the opposite behavior of Eq. (45). Table 10 gives results of a
numerical exercise similar to the one that generated Table 9. The observed biases are quite
different in this case. Considering the upper half of Table 10, the bias due to increasing error
size, with fixed a =1, is in the opposite direction from that seen in Table 9. Furthermore, these
biases are relatively modest. For this part of the table, the error amplification factor is
approximately 0.167. Considering the lower half of Table 10, the bias generated by fixing the
error at 5% but increasing “a”, and thus the extreme nature of the problem, the biases are is in the
same direction as observed for the corresponding exercise documented in Table 9. However,
once again these biases are relatively modest. The error amplification factor ranges from
approximately 0.0167 to 16.7.

So, it is clear that the nature of the non-linear function under consideration has a
profound impact on both the magnitude and direction of the biases generated when the errors
become large or the conditions extreme. Therefore, it would seem to be impossible to generalize
about the outcome for other non-linear functions. Each individual situation has to be examined
independently to reveal the basic characteristics inherent to the particular non-linearity in
question. In passing, it should be noted that the behavior of the error amplification factor gives us
a strong indication as to the influence that non-linearity of a particular function will have on
producing biases when the errors are large or the conditions are extreme (or both).
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13.  Concluding Remarks

The following observations concerning the present investigation can be offered as
conclusions:

1) In physical situations involving large errors and/or extreme conditions the use of
deterministic calculations to relate derived information to more fundamental data
can lead to biased results. Instead, a probabilistic approach should be applied in
which both the basic parameters and the derived results are represented by
probability distribution functions.

2) Knowledge about the fundamental nature of a particular random variable plus
some specific numerical information about that variable, including estimates of
the mean value and standard deviation, can guide the selection of an appropriate
probability distribution to represent it in ensuing analysis that involves that
variable. For example, when a physical quantity can be represented by a random
variable that is allowed to assume any value between -∞ and +∞ – and the only
information available is an estimate of the mean value and standard deviation
(error) – then a normal (Gaussian) probability distribution is the optimal choice to
represent that variable. However, if the physical quantity is inherently positive –
and the only information available is an estimate of the mean value and standard
deviation – then a lognormal distribution is the optimal choice to represent the
associated random variable.

3) Extreme conditions can lead to error amplification if the functional relationship
between the primary quantity and the derived one is non-linear.

4) If the functional relationship between primary and derived variables is well
known – and the probability distribution for the primary variable is specified –
then an estimate of the “true” probability distribution for the derived variable can
be generated empirically by Monte Carlo simulation to a degree of precision
limited only by statistical considerations. Various low-order moments of this
distribution can also be estimated by this method. If the family of probability
functions to which this distribution belongs can be established from fundamental
considerations, then these moments can be used to uniquely characterize the
probability function.

5) Three important physical problems – radioactive decay, radiation shielding, and
stellar reaction rates dominated by resonance phenomena – were examined in the
present work. The outcome from this investigation has led us to conclude that
lognormal probability functions can be employed with confidence to provide
acceptable approximations to the empirical probability distributions generated by
Monte Carlo for those derived parameters that are known a priori to be inherently
positive in nature.
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6) In those cases where there are large errors involved and, consequently, the
lognormal distributions are severely asymmetric, we have demonstrated that the
analysis required to estimate the parameters of these distributions can be carried
out best using natural logarithms of the random variables. This will lead to normal
distributions whose parameters can be estimated with good precision by Monte
Carlo simulation and then used subsequently to calculate parameters for the
equivalent lognormal distributions that describe the actual random variables
themselves.

7) The lognormal distribution appears to provide quite a good approximation – in
situations involving large errors and extreme conditions – to those distributions
obtained empirically from Monte Carlo simulation for the inherently positive
derived quantities considered in this investigation. However, there is evidence
(see Figs. 6, 7, and 10) that the agreement is not perfect – especially in the wings
of these distributions far from the mean-value position. Therefore, it cannot be
ruled out in certain instances that unacceptable biases would develop when the
lognormal distribution is substituted for the true distribution. Approximation of
the true distribution – in numerical form – by an analytical function is an
expedient approach that can be very convenient. However, it should be
implemented only in those situations where the impact of this approximation is
minimal.

8) The effects of the interplay of non-linearity and larger errors cannot be
generalized. The size and even direction of differences between mean values and
errors deduced by deterministic calculations and those obtain by Monte Carlo
simulation is found to depend profoundly on the nature of the non-linear function
involve in the analysis.
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Table 1:  Results obtained from calculations of residual 53V radioactivity A and its
associated uncertainty following an elapsed time t = 3600 seconds a

λ (sec-1) b 0.007220 (2.5%) 0.007502 (1.2%) Ratio c

Deterministic Calculations 5.150 (65.0%) pCi d 1.866 (32.1%) pCi d 2.760
Monte Carlo Simulation 6.361 (72.5%) pCi d 1.965 (33.0%) pCi d 3.226

Ratio e 1.235 1.053 ---
a Analyses were performed using both deterministic calculations (Section 4) and Monte Carlo simulation
(Section 5). Details are discussed in Section 9. An initial activity A0 = 1 Ci is assumed (with no error).
Values obtained from the Monte Carlo simulation should be interpreted as mean values of probability
distributions. The quantities that appear in parentheses correspond to standard deviations expressed in
percent.
b λ is obtained using Eq. (34) and two different values of 53V half life, as indicated in Section 9. Half-life
errors are included in the analyses.
c Ratios of comparable residual activities calculated using two distinct values for the decay constant λ.
d Source intensity A after elapsed time t = 3600 seconds is given in units of pico Curie (1 pCi = 10-12 Ci ).
e Ratio of comparable residual activities calculated by the deterministic and Monte Carlo methods.
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Table 2:  Error amplification factors for a two-resonance reaction rate problem a

T9 (GK) AE1 AS1 AE2 AS2

0.01 225.1 1.000 ≈ 0 ≈ 0
0.02 112.6 1.000 ≈ 0 ≈ 0
0.05 45.03 1.000 ≈ 0 ≈ 0
0.1 22.51 0.9998 0.0069 0.0002
0.2 10.02 0.8905 1.938 0.1095
0.5 0.6561 0.1457 6.048 0.8543
1 0.1011 0.0449 3.381 0.9551
2 0.0271 0.0241 1.727 0.9759
5 0.0074 0.0165 0.6962 0.9835

a This problem is discussed in Section 11. Resonance parameters: E1 = 0.194 MeV and sE1 = 0.003 MeV
(1.5% error); S1 = 4.8 x 10-7 eV and sS1 = 1.6 x 10-7 eV (33.3% error); E2 = 0.305 MeV and sE2 = 0.004
MeV (1.3% error); S2 = 3.7 x 10-5 eV and sS2 = 1.85 x 10-5 eV (50% error). The reaction rate R is calculated
using Eq. (40)
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Table 3:  Resonance parameters corresponding to 46 known unbound states of 32S excited
by the 31P(p,γ)32S reaction for incident proton energies up to Ep ≈ 2 MeV. a

Ep b sEp c S d sS e

0.164 0.002 1.00 x 10-10 5.00 x 10-11

0.200 0.002 4.80 x 10-7 1.60 x 10-7

0.207 0.002 3.30 x 10-9 1.65 x 10-9

0.315 0.002 3.70 x 10-5 1.85 x 10-5

0.342 0.002 6.10 x 10-5 3.05 x 10-5

0.355 0.002 4.20 x 10-3 7.00 x 10-4

0.383 0.002 6.00 x 10-5 1.20 x 10-5

0.403 0.002 4.50 x 10-4 7.00 x 10-5

0.439 0.002 0.025 0.004
0.541 0.002 0.12 0.02
0.619 0.002 1.10 x 10-3 2.00 x 10-4

0.6424 0.0007 0.06 0.01
0.8113 0.0005 0.25 0.0375
0.821 0.001 0.05 0.015

0.8743 0.0005 0.0325 0.00975
0.8878 0.0005 0.02 0.006
0.8945 0.0005 0.08 0.024
0.9838 0.001 0.02 0.006
1.016 0.003 0.0075 0.00225

1.0565 0.0006 0.125 0.0375
1.0896 0.0006 0.0425 0.01275
1.1207 0.0006 0.35 0.105
1.1500 0.0007 0.0275 0.0075
1.1505 0.0007 0.25 0.05
1.1551 0.0006 0.17 0.051
1.2514 0.0006 1.075 0.125
1.2799 0.0008 0.0275 0.00825
1.4001 0.0006 0.1475 0.04425
1.4029 0.0008 0.575 0.1725
1.4114 0.0006 0.2275 0.06825
1.4383 0.0007 1.25 0.375
1.4700 0.0015 0.0175 0.00525
1.4731 0.0006 0.275 0.0825
1.4753 0.0015 0.0425 0.01275
1.5566 0.0006 1.025 0.3075
1.5829 0.0006 0.90 0.27
1.6989 0.001 0.1025 0.03075
1.7642 0.001 0.1025 0.03075
1.7961 0.001 0.125 0.0375
1.8915 0.001 0.25 0.075
1.8960 0.001 0.275 0.0825
1.9540 0.001 0.80 0.24
1.9771 0.001 0.45 0.135
1.9836 0.001 0.90 0.27
1.9909 0.001 0.60 0.18
2.0266 0.001 1.70 0.51

a Resonance-parameter data are extracted from Refs. [23,24,25].
b Resonance proton energy (MeV).
c Standard deviation in resonance proton energy (MeV).
d Resonance strength (eV).
e Standard deviation in resonance strength (eV).
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Table 4:  31P(p,γ)32S reaction rates and error correlations for six stellar temperatures

Reaction rates:

T9 (GK) Rdet a Error Rdet (%) b < R > c Error < R > (%) d Ratio e

0.02 2.6538 x 10-44 126 5.2091 x 10-44 195 1.9629
0.07 1.7856 x 10-14 43.6 1.8850 x 10-14 44.7 1.0557
0.25 5.1511 x 10-4 14.6 5.1732 x 10-4 14.6 1.0043

1 83.192 9.1 83.211 9.0 1.0002
3 2516.6 5.3 2516.6 5.3 ≈ 1
9 10528 6.2 10528 6.2 ≈ 1

Uncertainty correlations for the deterministic calculation of reaction rates f:

T9 (GK) 0.02 0.07 0.25 1 3 9

0.02 100.0
0.07 8.7 100.0
0.25 ≈ 0 22.7 100.0

1 ≈ 0 ≈ 0 27.5 100.0
3 ≈ 0 ≈ 0 5.4 60.9 100.0
9 ≈ 0 ≈ 0 0.6 10.1 67.0 100.0

Uncertainty correlations for the Monte Carlo calculation of reaction rates f:

T9 (GK) 0.02 0.07 0.25 1 3 9

0.02 100.0
0.07 10.0 100.0
0.25 0.1 22.5 100.0

1 ≈ 0 ≈ 0 27.7 100.0
3 0.1 0.1 5.5 60.8 100.0
9 0.2 0.1 0.7 10.2 67.1 100.0

a Deterministic reaction rates, Rdet , in units of cm3/second/mol are calculated directly using Eq. (40) and
the resonance parameters from Table 3 (Sections 4 and 11).
b Errors (standard deviations) in the deterministic reaction rates, Error Rdet , are calculated directly by
matrix error propagation (Sections 4 and 11).
c Mean values of reaction rates, < R >, in units of cm3/second/mol are deduced indirectly from Monte Carlo
simulation using Eq. (40) and resonance parameters from Table 3 (Sections 5 and 11). Use is made of the
transformation formulas given in Eqs. (28) and (29).
d Errors (standard deviations) in the mean values of reaction rates, Error < R >, are deduced indirectly from
Monte Carlo simulation at the same time that < R > is determined (Sections 5 and 11).
e Ratios of reaction-rate values < R > divided by corresponding deterministic values Rdet.
f Error correlations are given in percent. These matrices are symmetric so the upper halves are not shown.
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Table 5:  31P(p,γ)32S reaction rates for 29 selected stellar temperatures

T9 (GK) Rdet a Error Rdet (%) b < R > c Error < R > (%) d Ratio e

0.011 9.9904 x 10-78 217 9.2754 x 10-77 1033 9.284
0.012 1.6021 x 10-71 200 1.0421 x 10-70 720 6.505
0.013 2.8249 x 10-66 185 1.3931 x 10-65 542 4.932
0.014 8.7954 x 10-62 173 3.4818 x 10-61 431 3.959
0.015 6.8439 x 10-58 163 2.2691 x 10-57 357 3.316
0.02 2.6538 x 10-44 126 5.2091 x 10-44 195 1.963

0.025 3.5010 x 10-36 105 5.3897 x 10-36 140 1.539
0.03 8.6607 x 10-31 91.7 1.1662 x 10-30 111 1.347
0.04 4.9330 x 10-24 67.7 5.7882 x 10-24 71.1 1.173
0.05 8.9546 x 10-20 44.1 9.9652 x 10-20 47.0 1.113
0.06 1.0102 x 10-16 43.3 1.0876 x 10-16 44.8 1.077
0.07 1.7856 x 10-14 43.6 1.8850 x 10-14 44.7 1.056
0.09 1.8353 x 10-11 41.2 1.8971 x 10-11 42.1 1.034
0.1 2.0505 x 10-10 39.9 2.1064 x 10-10 40.7 1.027

0.15 2.7029 x 10-7 34.2 2.7345 x 10-7 34.2 1.012
0.2 1.7853 x 10-5 18.4 1.7972 x 10-5 18.2 1.007

0.25 5.1511 x 10-4 14.6 5.1732 x 10-4 14.6 1.004
0.3 6.1458 x 10-3 13.7 6.1640 x 10-3 13.7 1.003
0.4 0.15579 11.4 0.15605 11.4 1.002
0.6 4.6840 9.4 4.6875 9.4 1.001
0.9 51.010 9.1 51.026 9.1 ≈ 1
1 83.192 9.1 83.211 9.0 ≈ 1

1.5 380.87 8.1 380.91 8.0 ≈ 1
2 896.74 6.7 896.77 6.7 ≈ 1

2.5 1621.4 5.7 1621.5 5.7 ≈ 1
3 2516.6 5.3 2516.6 5.3 ≈ 1
4 4542.5 5.3 4542.6 5.3 ≈ 1
6 8054.0 5.8 8054.1 5.7 ≈ 1
9 10528 6.2 10528 6.2 ≈ 1

a Deterministic reaction rates, Rdet , in units of cm3/second/mol are calculated directly using Eq. (40) and
the resonance parameters from Table 3 (Sections 4 and 11).
b Errors (standard deviations) in the deterministic reaction rates, Error Rdet , are calculated directly by
matrix error propagation (Sections 4 and 11).
c Mean values of reaction rates, < R >, in units of cm3/second/mol are deduced indirectly from Monte Carlo
simulation using Eq. (40) and resonance parameters from Table 3 (Sections 5 and 11). Use is made of the
transformation formulas given in Eqs. (28) and (29).
d Errors (standard deviations) in the mean values of reaction rates, Error < R >, are deduced indirectly from
Monte Carlo simulation at the same time that < R > is determined (Sections 5 and 11).
e Ratios of reaction-rate values, < R >, divided by corresponding deterministic values, Rdet.
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Table 6:  Values of the best-fit solution parameters ai generated by fitting Eq. (44) to
natural logarithm of 31P(p,γ)32S reaction-rate data for 29 selected stellar temperatures a

Best-fit solution parameters for natural logarithm of reaction rate:

Index i ai Absolute Error in ai

1 108.511 9.80799
2 -2.33193 0.0925378
3 64.0459 8.09397
4 -177.951 18.9085
5 13.0491 1.51436
6 -0.883195 0.111885
7 71.5903 7.56445

Error correlations for best-fit solution parameters b:

Index i 1 2 3 4 5 6 7
1 100.0
2 -84.6 100.0
3 94.0 -97.2 100.0
4 -99.0 91.2 -98.0 100.0
5 99.6 -84.8 93.6 -98.6 100.0
6 -98.0 79.0 -88.8 95.7 -99.1 100.0
7 97.1 -94.4 99.4 -99.5 96.6 -92.7 100.0

a Method is discussed in Section 11.
b Correlations are given in percent. The matrix is symmetric so the upper half is not shown.
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Table 7:  Results obtained by fitting Eq. (44) to the natural logarithms of the 31P(p,γ)32S
reaction rates and to their errors for 29 selected stellar temperatures a

T9 (GK) < ln R >data b (Error ln R)data c < ln R >fit d (Error ln R)fit e

0.011 -177.41 2.1657 -177.80 2.1291
0.012 -163.12 1.9942 -163.29 1.9681
0.013 -151.04 1.8497 -151.06 1.8310
0.014 -140.69 1.7265 -140.62 1.7126
0.015 -131.73 1.6203 -131.61 1.6093
0.02 -100.45 1.2547 -100.24 1.2425

0.025 -81.747 1.0421 -81.529 1.0174
0.03 -69.324 0.89894 -69.041 0.86475
0.04 -53.708 0.63940 -53.296 0.67033
0.05 -43.850 0.44522 -43.656 0.55145
0.06 -36.847 0.42638 -37.061 0.47114
0.07 -31.692 0.42648 -32.212 0.41324
0.09 -24.768 0.40322 -25.458 0.33537
0.1 -22.356 0.39132 -22.980 0.30795

0.15 -15.166 0.33176 -14.942 0.22537
0.2 -10.942 0.18048 -10.368 0.18410

0.25 -7.5767 0.14533 -7.3225 0.15942
0.3 -5.0977 0.13621 -5.1129 0.14302
0.4 -1.8635 0.11354 -2.0798 0.12249
0.6 1.5410 0.093553 1.3523 0.10151
0.9 3.9287 0.090485 3.9062 0.086288
1 4.4178 0.08991 4.4403 0.082929

1.5 5.9398 0.080107 6.0680 0.071490
2 6.7970 0.066544 6.8913 0.064544

2.5 7.3899 0.057077 7.4045 0.059887
3 7.8297 0.052921 7.7772 0.056714
4 8.4203 0.052713 8.3347 0.053345
6 8.9928 0.057184 9.0798 0.053714
9 9.2599 0.061605 9.2388 0.062684

a The method of linear least squares is employed in this analysis [1,6]. Mean values of ln R at various
stellar temperatures are weighted by their standard deviations (Section 11).
b  < ln R >data represents the fitted data points.
c (Error ln R)data represents standard deviations (errors) used to weight the fitted data points.
d < ln R >fit represents mean values calculated using Eq. (44) and parameters obtained from fitting the mean
value data points.
e (Error ln R)fit represents errors calculated using Eq. (44) and parameters obtained from fitting the error
data points.
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 Table 8:  Derived values of reaction rate R from results obtained by fitting Eq. (44) to
natural logarithm of 31P(p,γ)32S reaction-rate data for 29 selected stellar temperatures

T9 (GK) < R >data a (Error R)data in % 
b < R >fit c (Error R)fit in % 

d

0.011 9.3859 x 10-77 1039 5.8517 x 10-77 959
0.012 1.0531 x 10-70 724 8.4365 x 10-71 686
0.013 1.4062 x 10-65 544 1.3247 x 10-65 525
0.014 3.5112 x 10-61 433 3.6682 x 10-61 422
0.015 2.2866 x 10-57 358 2.5478 x 10-57 351
0.02 5.2372 x 10-44 196 6.3029 x 10-44 192

0.025 5.4120 x 10-36 140 6.5657 x 10-36 135
0.03 1.1702 x 10-30 112 1.5076 x 10-30 105
0.04 5.8030 x 10-24 71.1 8.9388 x 10-24 75.3
0.05 9.9848 x 10-20 46.8 1.2772 x 10-19 59.6
0.06 1.0894 x 10-16 44.7 8.9702 x 10-17 49.9
0.07 1.8879 x 10-14 44.7 1.1157 x 10-14 43.2
0.09 1.8995 x 10-11 42.0 9.2906 x 10-12 34.5
0.1 2.1089 x 10-10 40.7 1.0982 x 10-10 31.5

0.15 2.7372 x 10-7 34.1 3.3258 x 10-7 22.8
0.2 1.7987 x 10-5 18.2 3.1946 x 10-5 18.6

0.25 5.1767 x 10-4 14.6 6.6898 x 10-4 16.0
0.3 6.1678 x 10-3 13.7 6.0806 x 10-3 14.4
0.4 0.15614 11.4 0.12589 12.3
0.6 4.6899 9.4 3.8863 10.2
0.9 51.048 9.1 49.893 8.6
1 83.247 9.0 85.089 8.3

1.5 381.07 8.0 432.93 7.2
2 897.16 6.7 985.73 6.5

2.5 1622.2 5.7 1646.3 6.0
3 2517.8 5.3 2389.3 5.7
4 4544.8 5.3 4171.9 5.3
6 8058.1 5.7 8788.4 5.4
9 10528 6.2 10309 6.3

a < R >data is calculated from < ln R >data and (Error ln R)data using Eqs. (28) and (29).
b (Error R)data is calculated from < ln R >data and (Error ln R)data using Eqs. (28) and (29).
c < R >fit is calculated from < ln R > fit and (Error ln R) fit using Eqs. (28) and (29).
d (Error R) fit is calculated from < ln R > fit and (Error ln R) fit using Eqs. (28) and (29).
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Table 9:  The effects of error and error amplification for the simple non-linear function y
= f(x) = exp(-a x)

Assume a lognormal probability distribution with mean value mx = 6 and variable
standard deviation sx (a = 1):

Error in x (%) sx f(mx) < y > a Ratio b

1 0.06 0.0024788 0.0024832 1.0018
2 0.12 0.0024788 0.0024966 1.0072
5 0.3 0.0024788 0.0025911 1.0453
10 0.6 0.0024788 0.0029380 1.1853
20 1.2 0.0024788 0.0044566 1.7979
50 3 0.0024788 0.018399 7.4225
100 6 0.0024788 0.071661 28.909

Assume a lognormal probability distribution with mean value mx = 6 and variable
parameter “a” (sx = 0.3):

“a” f(mx) < y > a Ratio b

0.1 0.54881 0.54906 1.0005
0.2 0.30119 0.30174 1.0018
0.5 0.049787 0.050346 1.0112
1 0.0024788 0.0025911 1.0453
2 6.1442 x 10-6 7.3178 x 10-6 1.1910
5 9.3576 x 10-14 2.6691 x 10-13 2.8523
10 8.7565 x 10-27 4.4776 x 10-25 51.134

a < y > = � f(x) p(x) dx where p(x) is the indicated lognormal distribution; values in tables are computed
numerically using a spreadsheet program.
b Ratio = < y > / f(mx).
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Table 10:  The effects of error and error amplification for the simple non-linear function
y = f(x) = exp(-a / x)

Assume a lognormal probability distribution with mean value mx = 6 and variable
standard deviation sx (a = 1):

Error in x (%) sx f(mx) < y > a Ratio b

1 0.06 0.84648 0.84647 0.99999
2 0.12 0.84648 0.84643 0.99994
5 0.3 0.84648 0.84616 0.99962
10 0.6 0.84648 0.84519 0.99848
20 1.2 0.84648 0.84136 0.99395
50 3 0.84648 0.81612 0.96413
100 6 0.84648 0.74538 0.88056

Assume a lognormal probability distribution with mean value mx = 6 and variable
parameter “a” (sx = 0.3):

“a” f(mx) < y > a Ratio b

0.1 0.98347 0.98343 0.99996
0.2 0.96722 0.96714 0.99992
0.5 0.92004 0.91986 0.99980
1 0.84648 0.84616 0.99962
2 0.71653 0.71603 0.99930
5 0.43460 0.43407 0.99878
10 0.18888 0.18875 0.99931
20 0.035674 0.035871 1.0055
50 0.00024037 0.00025642 1.0668
100 5.7778 x 10-8 7.7484 x 10-8 1.3411

a < y > = � f(x) p(x) dx where p(x) is the indicated lognormal distribution; values in tables are computed
numerically using a spreadsheet program.
b Ratio = < y > / f(mx).
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Figure Captions

Figure 1: Plots are shown of normal distributions p(x) with mean value mx = 100
and standard deviations sx = 1, 10, 20, 50, 100, and 150, respectively. These distributions
are normalized so that p(mx = 100) = 1. It is obvious from the plots that there is a
significant probability of encountering a negative value of x when sx ≥ 50.

Figure 2: The fraction of total integrated probability (given in percent) for a normal
distribution that corresponds to negative values of x is plotted as a function of the
distribution standard deviation (also expressed in percent).

Figure 3: Plots are shown of lognormal distributions p(x) with mean value mx = 100
and standard deviations sx = 1, 10, 20, 50, 100, and 150, respectively. These distributions
are normalized so that p(x0) = 1, where x0 = exp(ν - σ2) is the mode of the distribution. It
is obvious from these plots that the lognormal distribution is strongly asymmetric for
large values of  sx .

Figure 4: The shapes of normal and lognormal distributions p(x) with equivalent
mean values mx and standard deviations sx are compared. Four examples are considered:
sx = 20, 50, 100, and 150. These functions are normalized so that the integrals � p(x)dx
are equal for both curves shown in each frame. Evidently, the shapes of the normal and
lognormal distributions are not easily distinguished when sx ≈ 20 (error ≈ 20%), so no
plots are shown that involve errors smaller than this value.

Figure 5: A lognormal function with mean value mx = 10 and standard deviation sx
= 5 (50% error) is plotted as a smooth curve. The empirical replication of this distribution
generated by Monte Carlo simulation – with N = 100000 sampling histories and 30
intervals of equal increment in the variable x – is also exhibited. These two distributions
are normalized identically in order to provide a meaningful comparison.

Figure 6: The probability density function (PDF) for natural logarithm of residual
radioactivity – as discussed in the example presented in Section 9 – is shown using both
linear and semi-log scales. The discrete points were generated by Monte Carlo simulation
while the smooth curve is an analytical normal distribution with mean value and standard
deviation also generated by the same Monte Carlo analysis.

Figure 7: The probability density function (PDF) for natural logarithm of 662-keV
137Cs gamma-ray intensity transmitted through lead shielding – as discussed in the
example presented in Section 10 – is shown using both linear and semi-log scales. The
discrete points were generated by Monte Carlo simulation while the smooth curve is an
analytical normal distribution with mean value and standard deviation also generated by
the same Monte Carlo analysis.

Figure 8: Relative contributions to the stellar reaction rate from the first five
unbound resonances in the 31P(p,γ)32S reaction are shown in bar-graph form for nine
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different stellar temperatures T9. The resonance data used in generating these plots are
obtained from Table 3 and the detailed analysis is described in Section 11. Although they
are unlabelled, the vertical scales in these plots are linear and they exhibit the relative
contributions from these resonances in proper proportion. The individual resonances are
numbered in order of ascending incident proton energy, with “1” denoting the lowest-
energy resonance and “5” denoting the highest-energy resonance of this group.

Figure 9: Mean values and standard deviations of reaction rates for the 31P(p,γ)32S
reaction obtained by deterministic calculations and Monte Carlo simulation using Eq.
(40) are compared by plotting ratios as a function of stellar temperature T9. In this figure
< R > denotes the average value of a lognormal probability distribution for reaction rate
that was obtained by transformation from the parameters of its equivalent, empirically
determined normal distribution for the natural logarithm of reaction rate ln R. Rdet is the
corresponding quantity obtained by deterministic calculations. Error < R > and Error Rdet
denote corresponding standard deviations in these parameters. It is seen that noticeable
differences arise between the results generated by these two methods for T9 < 0.1 GK.

Figure 10: Probability distributions for natural logarithms of reaction rates are shown
for stellar temperatures T9 = 0.011 and 0.1 GK using both linear and semi-logarithmic
scales (Section 11). The individual points that are shown in these plots were generated by
Monte Carlo simulation; the smooth curves are equivalent normal distributions with
mean values and standard deviations that were also produced by the Monte Carlo
analyses.

Figure 11: Quality-of-fit factors and quality-of agreement indicators are plotted based
on results given in Tables 7 and 8 (Section 11). Natural Logarithm of Reaction Rate:
Quality of Fit = [< ln R >data - < ln R >fit] / (Error ln R)data. Error in Natural Logarithm of
Reaction Rate: Quality of Fit = {(Error ln R)data – (Error ln R)fit} / [0.1 × < ln R >data].
Reaction Rate: Quality of Agreement = [< R >data - < R >fit] / (Error R)data.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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