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ANL/NDM-155

FAST-NEUTRON SCATTERING FROM ELEMENTAL RHENIUM

ABSTRACT

Results of measurements of neutron scattering from elemental rhenium over the incident-energy
regions 0.3-1.5 MeV, and 4.5-10.0 MeV are presented. The first of these supplements
previously-reported work at this Laboratory, and the second consists of information in a new
energy range. These experimental results are interpreted in terms of optical-statistical and

- coupled-channels models, including consideration of dispersive effects, and of scalar and vector
potentials. Some basic and applied physical implications of these considerations are discussed.
Comparisons are made with other regional and/or global models, and with evaluated nuclear-data
files used in applications.

I. INTRODUCTION

Elemental thenium consist of a pair of isotopes:- '*Re (37.4%) and "*'Re (62.6%). Both
are highly deformed collective rotors with the low-lying structure of each built upon the K=5/2"
band (5/2 [402]) with the particle configuration (7/2")? (5/2*)(9/2")* arising from the d*? shell
[(MN59); (Pre62)]. Ground states are 5/2" for both isotopes. The first excited states are 7/2* and
at approximately 130 keV, followed by 9/2* levels at an excitation of approximately 300 keV
(NNDC). The next well-deformed rotational band is a K=9/2 (9/2° [514]) configuration. In
'*Re the 9/2 head of the latter band is at an excitation of approximately 370 keV, and in *'Re at
approximately 210 keV. With these collective structures one would expect relatively strong
rotational effects in fast-neutron elastic- and inelastic-scattering processes. The only thing that is
experimentally known of fast-neutron scattering from rhenium is the result of work at this
Laboratory; some very early results at lower energies and the present lower-energy and 4.5 - 10
MeV results. The experimental knowledge of thenium neutron total cross sections is little
better, as summarized in Appendix A-1. At low energies neutron capture information is
available (MY87) but it has minor influence on fast-neutron scattering. The lack of experimental
neutron-scattering information for masses in this region of collective deformation is,
unfortunately, quite typical.

Rhenium is not generally a concern in conventional fission-reactor fuel-cycle
considerations. However, the metal is a high-temperature corrosion-resistant material for special
uses; for example, in high-temperature nuclear space-power sources. Moreover, it is desirable to
improve the understanding of the neutron interaction with nuclei in this mass region is a matter
of wide practical concern. It was for these purposes that the present work was undertaken.



IL. EXPERIMENTAL PROCEDURES AND RESULTS

- Rhenium elastic- and inelastic-scattering cross sections at incident energies of less than
1.5 MeV were reported by the author and co-workers some time ago (SGW68). Since that
report, a number of additional differential elastic- and inelastic-scattering measurements have
been made over the same lower-energy range. All of these measurements employed the time of
flight technique (CL55) with eight flight paths of about two meters length. Eight to ten ,
measurements were distributed over the angular range of 25° - 160° at each incident energy. The
neutron source was the "Li(p,n)’Be reaction (Dro87) below neutron energies of 1.5 MeV. This
reaction emits a second neutron group that distorts inelastic-scattering results at excitations of
approximately 450 - 500 keV. Below incident energies of 1.5 MeV the scattered-neutron
resolutions were 25 - 50 keV, sufficient to resolve a great deal of the structure in the inelastic-
scattering results. In total, approximately 118 scattered-neutron elastic and inelastic angular
distributions were measured at incident energies of less than 1.5 MeV, about half of which have
been published in the eatlier work. All of these lower-energy measurements were made relative
to carbon or zirconium total neutron scattering as reported in ref, (Lan+61). The lower-energy
elastic-scattering results were energy-averaged and collapsed into twelve distributions in order to
smooth fluctuations and reduce the statistical uncertainties. The resulting averaged distributions
are illustrated in the left panel of Fig. II-1. The corresponding lower-energy inelastic-scattering
results are discussed in Sec. ITI-C, below.

The second portion of the neutron-scattering measurements covered the neutron energy
range 4.5 - 10 MeV with twelve approximately equal-energy-spaced distributions. Each of these
higher-energy measurements involved = 40 differential values distributed between ~ 18° and
160°. The *D(d,n)’He reaction (Dro87) was used as a neutron source at incident energies of 4.5
MeV and above. The scattered-neutron resolutions were =~ 300 keV. Therefore, the inelastic
scattering resulting from the excitation of low-lying levels of the rhenium isotopes was not
clearly resolved. These higher-energy measurements involved the concurrent use of ten flight
paths, each = 5 meters in length. Cross sections were measured relative to the H(n,n) scattering
standard (CSL83). The higher-energy “elastic”-scattering results are illustrated in the right panel
of Fig. II-1. '

All'of the measurements used cylindrical samples of high-purity elemental metallic
thenium, approximately 2.0 cm in diameter and 2.0 cm long. All of the experimental results were
corrected for angular-resolution, beam attenuation and multiple-event effects using monte-carlo
procedures (Smi90). :

Various versions of the time-of-flight system used in the above measurements operated at
The Argonne National Laboratory for over thirty years. They are well described elsewhere
(Smi92).



ITI. PHYSICAL MODELS
III-A. OPTICAL-STATISTICAL MODEL (SOM)

The weak-coupling optical-statistical model (SOM) [(Wol51); (Fes58)] was assumed as
the starting point for the physical modeling. It is an energy-average model, reflecting gradual
energy-dependent trends of the experimental observables, but not the detailed underlying
resonance structure. Above a few keV the microscopic resonances underlying the observed
phenomena grossly overlap to form smooth energy-dependent averages consistent with the SOM
concepts, therefore the present considerations started at 50 keV and extended upward in energy
to approximately 10 - 12 MeV where they were terminated due to the lack of experimental
information at higher energies. Throughout this work the real potential was assumed to have the
Saxon-Woods form, the imaginary potential the Saxon-Woods-Derivative form, and the spin-
orbit potential the Thomas form (Hod63). Both direct and compound-nucleus interactions were
given detailed attention. Eighteen ®Re and eighteen '®'Re excited states were explicitly
considered up to excitation energies of ~ 1.0 MeV. The respective excitation energies, spins and
parities were taken from the Nuclear Data Sheets (NNDC). Higher-energy excitations were
considered in the context of statistical evaporation processes as set-forth by Gilbert and Cameron
(GC65). The calculations included resonance width-fluctuation and correlation corrections
following the methods of Moldauer (Mol80). Compound-nucleus processes were considered
only as relevant to neutron total and scattering processes. Multiple-neutron and charged-particle
emission is not significant at the energies of the present work. All of the SOM calculations were
carried out using the code ELEMENTAL ABAREX (Smi99), which concurrently treats each of
the two isotopes of elemental rthenium. In doing so real and imaginary iso-vector potentials can
be examined, assuming the same geometries as those of the scalar potentials. The spin-orbit
potentials were fixed to the real values of ref. (W G86). '

The SOM parameters were determined by explicitly chi-square fitting the neutron total
and differential scattering cross sections. The model fitting proceeded through six sequential
steps. i) Six parameter fitting varying real and imaginary potential parameters from which the
real-potential diffuseness, a,, was fixed and the fitting proceeded to the next step. ii) Five
parameter fits from which the real-potential reduced radius, r,where R, =r,A'? was determined
and fixed for the subsequent steps. iii) Four parameter fitting from which the reduced imaginary-
potential radius, r,, was determined and fixed. iv) Three parameter fits from which the
imaginary diffuseness, a,, was determined and fixed. v) Two parameter fitting giving the real
potential strengths, V. And finally, step vi) one parameter fitting from which the imaginary
strength, W, was determined. The entire procedure was repeated several times in an iterative
manner, using the results of the prior fitting cycle as the starting point for the current one. The
data base for the fitting included all of the differential-scattering data of Fig. II-1. The
uncertainties of the scattering data were taken as indicated by the measurements, except for the
low-energy averaged data where 5% was subjectively chosen. The total cross sections
(Appendix A-1) at the energies of the scattering measurements were concurrently included in the
fitting procedures. In doing so the total-cross-section data were averaged over approximately



100 keV and given a weight that was equivalent to that of four or five differential-scattering
values. The experimental resolutions used in the scattering measurements below = 1.5 MeV
were such as to resolve the elastic from all inelastic-scattering components. However, for the
higher-energy data (4.5 - 10 MeV) the observed scattering distributions included the
contributions due to the excitation of the first two or three excited levels of each isotope with the
elastic component. The fitting was adjusted so as to include these inelastic contributions with the
elastic scattering, reflecting the experimental resolutions above 4.5 MeV.,

The above fitting procedures led to the SOM parameters given in Table ITI-A-1
(Throughout this work potential parameters are given to sufficient precision to make possible
accurate reproduction of calculated results. These precisions do not necessarily imply
uncertainties.) The SOM parameters may reflect the inappropriateness of the model for
describing the fast-neutron interaction with these two highly collective rotational isotopes. There
are several causes for concern. The real-potential strength is essentially constant, not decreasing
with energy as one would expect from the non-locality of the nuclear force (PB62), and as
encountered in commonly used “global” and “regional” models [(KDO03); (Hod94)]. The real
reduced radius is rather small. This tends to be characteristic of SOM representations of the
neutron interaction with highly collective targets in this mass region [(Smi00); (Smi01)]. The
imaginary-potential strength has two branches reflecting a sharp energy dependence. The
imaginary radius is unusually large. The imaginary diffuseness is quite small at low energies
and rapidly increases with energy. These SOM parameters are based upon the interpretation of
the present experimental work which only extends to ten McV. Extrapolation to higher energy,
as discussed below in the context of dispersion effects, may be valid to some extent. Despite the
difficulties, the SOM may be of practical use in some applications. It gives a very good
representation of the neutron total cross section of elemental rhenium from a few keV to more
than 15 MeV, as illustrated in Fig. ITI-A-1. The calculated results are within several percent of
the measured values. Deviations between measurement and calculation are less than variations
within the experimental data alone. Furthermore, the experimental-total-cross-section data sets -
somewhat vary in magnitude and the energy-dependent shape is not entirely consistent with any
optical-model. The SOM does not do well in describing the measured “elastic”- scattering
distributions, as illustrated in Fig. ITI-A-2. The agreement between measurement and calculation
is reasonably good up to incident energies of . 1.5 MeV. In this low-energy region the
compound-elastic contribution is strongly influenced by competition with compound-nucleus
inelastic processes which were given detailed attention in the calculations. Above = 1.5 MeV the
measured “elastic” distributions also include growing contributions from inelastic scattering
which increasingly is dominated by direct-reaction processes involving the collective rotational
properties of the two rhenium isotopes. 'Such direct-reaction processes are beyond the scope of
the SOM, and are dealt with below in the context of rotational coupled-channels models. The
consequence is a distortion of the SOM scattering calculations in the few-MeV region,
particularly in the minima of the measured distributions which contain significant inelastic
direct-reaction contributions.
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IIL-B. SPHERICAL SCALAR AND VECTOR POTENTIALS (SOMYV)

From basic concepts of nuclear forces and supported by some experimental evidence
[(GPT68); (Sat69); (Hod94) and (BG69)] the real and imaginary SOM potentials are frequently
expressed in the forms

V =V, ¥ Vi
and (II-B-1)
W = WO + Wl'n: '

where V,, (W) is the “scalar” term and V, (W) is the “vector” term, T is the nuclear asymmetry
equal to (N-Z)/A, and the signs are negative for neutron induced processes and positive for
proton processes. These expressions are manifestation of the iso-spin dependence of the
potential that is discussed in Sec. IV, below. They are frequently used in practical data
interpretations, as in this case. Herein the SOM with the formulations of Eqgs. III-B-1 is termed
the SOMV. Various values of V, are found in the literature, generally in the range 15 - 30 MeV,
with 16 and 24 MeV commonly used values [(MY87); (Smi00)]. The imaginary “vector” values
are generally taken to be half those of the real potential. The two isotopes of rhenium were dealt
with in detail in the above SOM derivation, including size, compound-nucleus structure and
natural abundance. However, the asymmetry and its implications on the potentials were not
considered. The asymmetries of '*Re and '"'Re differ by less than 4%. Therefore, the impact of
the “vector” term of Eq. ITI-B-1 is small; e.g., for a typical V, value of 16 MeV the real
‘potentials of the two isotopes will differ by approximately 0.7 MeV, a value which is less than
1.5% of the entire real potential and thus hard to detect from experimental interpretations. The -
impact of W, is even smaller. - '

All the fitting procedures used to determine the SOM were explicitly repeated to obtain
the SOMYV, including selection of geometric factors. Two choices of V/W, were used; 16/8
MeV and 24/12 MeV. The resulting potential parameters are given in Tables ITI-B-1 and III-
B-2, respectively. The Table III-B-1 SOMYV potential gives a description of the observed
rhenium total cross sections very similar to that obtained with the SOM over the energy range of
the present interpretations, as illustrated by comparing Fig. ITI-B-1 and Fig. III-A-1. Above 10
MeV the SOMYV total cross section calculations tend to be several percent smaller than the
results of the SOM calculations, and smaller than the measured values. This is the region of
energy extrapolation of both the SOM and SOMYV potentials as described in Sec. ITI-D. The
discrepancy vanishes with alternate choices for extrapolation in energy. Fig. I1I-B-2 compares
the measured differential “elastic”-scattering results with the those of the SOMV calculation
using the potential of Table III-B-1. The results are essentially identical to those obtained with
the SOM. The “vector” potential of the above SOMV was increased to V/W, equal 24/12 MeV
in order to examine the effect of alternate “vector” potential choices. 24 and 12 MéeV are
commonly used values found in the literature (Smi%99A). The entire fitting procedure of the
SOMYV was repeated, resulting in the potential parameters of Table ITI-B-2. The calculated and
“measured total cross sections and differential “elastic” scattering cross sections were compared,
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with results that are essentially identical to those illustrated in Fig III-B-1 and Fig, I11-B-2.
Generally, it was concluded that the various SOMV potentials lead to no improvement over the
simple SOM potential in the present application. Any differences probably reflect reasonable
statistical fluctuations in the respective fitting procedures. This is not surprising as for the two
thenium isotopes the vector potential effects are very small, generally below the experimental
sensitivity.

II-C. COUPLED-CHANNELS ROTATIONAL MODELS (ROTM)

The various versions of the SOM fall qualitatively short of reasonably describing the
scattering of fast neutrons from these two highly collective rotational isotopes. In particular, they
do not describe the elastic or inelastic scattering by large amounts. One should expect the
scattering between the 5/27(g.s.), 7/2" (E, = 130 keV), and 9/2* (E, = 300 keV) levels of the
ground-state K=5/2" band to be strongly coupled. In the ROTM interpretation these first three
yrast states of the 5/2" g.s. rotational band of each of the two isotopes were coupled together.

The "**Re deformations were taken to be p,= 0.22 and B, = -0.085 and those of '*'Re to be B, =
0.21 and B, = -0.085, as indicated by systematics and as cited in the literature [(GPA72);
(MY87)]. With these choices a comprehensive rotational fitting procedure was carried out using
the geometric form factors of the above SOM and a similar fitting rational. All of the
calculations employed the coupled-channels method (Tamé65) implemented with the coupled-
channels code ECIS (Ray96). The latest version of that code will handle compound-nucleus
processes in the same way as the ABAREX used in the SOM fitting. Each step of the fitting
consisted of a '*Re and a "*’Re calculation, assuming that the experimental data applied only to
the respective isotope. The resulting two parameters sought in that particular step of the fitting
were then averaged, weighting with the isotopic abundance, to obtain the “elemental” value. The
procedure clearly does not consider vector potential effects but those have been shown to be
negledgable in the present application. All the fitting was done with the differential scattering
measurements. The total cross sections were considered only in comparisons with the calculated
results after the fitting.

The ROTM ¢élemental parameters following from the above fitting procedure are given in

Table III-C-1. These parameters lead to the elemental neutron total cross sections compared
~ with the available experimental information in Fig. ITI-C-1. The quality of the description of

the experimental results approaches that of the SOM even though no total cross sections were
involved in the fitting, as in the SOM case. This suggests that the measured total and
differential-scattering cross sections are reasonably consistent. Fig. III-C-2 compares the
experimental scattering data with the results of calculations using the ROTM. The experimental
observables are well described by the model. In particular, the large discrepancies so evident
with variants of the SOM are not present. This is clearly a reflection of the rotational nature of
the model in this application. Below incident energies of 1.5 MeV the single elastic
distributions are reasonably consistent with the measured values as one would expect from the
estimated experimental energy resolution. At and above 4.5 MeV the calculations combining
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the elastic contribution with those from the first two inelastic groups of the g.s. rotational band
are clearly most consistent with the data, as expected from the estimated energy resolution of the
measurements.

The above elemental ROTM results are quite consistent with those obtained if one treats
'Re and "*"Re individually and assumes that the experimental elemental data is explicitly
applicable to either of the isotopes. With these assumptions the above isotopic fitting
- procedures were repeated individually for each of the two isotopes to obtain “isotopic” potential
parameter sets. These are illustrated for '*Re in Table III-C-2., The isotopic potential
parameters are very similar to those of the ROTM, as are comparisons with the measured values.
This again suggests that “vector” potential effects are not a serious consideration in the present
application, and that the differences due to compound-nucleus properties and size effects are
small.

The present inelastic-scattering results were combined with the early work of ref.
(SGW68). The combined set was ordered by incident and excitation energy, and then averaged
over approximately 50 keV incident-energy bins. Uncertainties were assigned to the averaged

-values as estimated by the author. These inelastic-scattering excitation functions are correlated
with the known excited levels in the isotopes '**Re and *’Re in Table III-C-3. The first four
inelastically-scattered neutron groups seem quite clearly associated with well-defined levels in
the two rhenium isotopes. The fifth observed inelastic-neutron group is in the energy region
which is distorted by the second neutron group of the source reaction, as noted above. It

~doubtless consists of contributions from three reported levels in the two isotopes, but also
includes a large contribution from elastic-scattering of the second source-reaction group. This
conclusion is strongly supported by the cross section magnitudes, as discussed below. The sixth
inelastic group of Table III-C-3 may be associated with at least six reported levels in the two
isotopes. Four additional inelastic-neutron “groups” were observed but, in the context of the
rapidly increasing level densities of each of the two isotopes and deteriorating experimental
energy resolution, correlation between observation and level structure rapidly deteriorates above
excitations of 0.6-0.7 keV, and no attempt was made to establish such associations. The cross
sections for the above excitations were calculated with the ROTM potential with the results
shown in Fig, II-C-3. The agreement between measured and calculated results for levels 2,3,4
and 6 is reasonably good given the uncertainties in the measured and calculated values. The
measurements relative to level 5 are grossly larger than predicted by the model. This is the level
greatly distorted by the elastic scattering of the second group from the source reaction. The
calculated values for the excitation of the first (1) level are significantly larger than the measured
quantities over much of the experimental energy range. There can be little doubt that the
observed cross sections are due to excitation of the yrast (7/2+) levels in each of the rhenium
isotopes. Furthermore, much of the cross section consists of the direct-reaction component
which is strongly influenced by the magnitude of §,, The comparisons of Fig. ITI-C-3 suggest
that the {3, used in the above ROTM calculations is too large. The entire ROTM fitting, outlined
above, was repeated with smaller values of B, After several attempts it was concluded that the
inelastic excitation of the first level was best calculated when the B, of each isotope was reduced
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by approximately 15% from the values used in the above ROTM calculations. The potential
parameters following from the fitting with these smaller values are essentially identical to those
of the ROTM. The resulting calculated inelastic excitation of the first level was in much
improved agreement with experiment, as illustrated in Fig. III-C-4, and the description of the
differential-scattering distributions was essential the same as achieved with the ROTM potential,
shown in Fig, III-C-2. The evidence is not unequivocal, but the inelastic-scattering
measurements suggest that the B, used in the ROTM model, and as reported in the literature, is
too large. More precise inelastic-scattering evidence may well support this conclusion.

II1I-D. DISPERSION EFFECTS

It is well known that there is a dispersion relationship coupling real and imaginary
potentials and reflecting causality [(Sat83); (Lip66); (Pas67) and (Fes58)]. This relationship is
frequently expressed in the form :

JB)y = J(E)gp + (P/m)- f [ J(B)/(E - E*)]-dE’ I-D-1

where Jy is the strength of the real potential, J that of the local-equivalent Hartree-Fock
potential, and Jy, the strength of the imaginary potential. “P” is the principle value of the integral
which is evaluated from -« to +c. Here, and throughout this section, strengths are give in the
form of volume-integrals-per-nucleon unless otherwise stated. The above integral can be broken
into surface, AJ,,, and volume, AJ;, components’

Aly = (Pin) [ I (EVE-E)-dE'  ILD-2
and

Al = (P/m) f [Toui(E’)/(E - E")]-dB’. I11-D-3

Then JVOI(E) = Jeﬂ(E) + AJsur(E) and Jeﬁ(E) = JI-IF(E) +AJ vol(E)7 where Jsur(E) and JvoI(E) are
surface- and volume-imaginary potential strengths, respectively. J and AJ, are both
approximately linear functions of energy in the range of the present considerations, thus the
individual components can not be experimentally resolved. The effect of Eq.III-D-2 isto add a
surface component to the real potential that is some fraction of the imaginary potential. The
magnitude of this contribution was calculated using the methods of Lawson (LGS87) and
Lawson and Smith (LS01). The latter reference presents a detailed description of the theory and
method, and includes a FORTRAN code for executing the calculations. In the present
application it was assumed that AJ,, retained the geometric parameters and Saxon-Woods-
Derivative form of the imaginary potential, varying only in magnitude. This is an assumption
that is not necessarily true, but there appears to be no guidance as to alternate shapes. The
experimental data base and associated models are strictly relevant to only the energy range of 10
MeV or less. It was assumed that the surface-imaginary potential was entirely a surface effect
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up to 10 MeV, and then fell linearly to zero at 80 MeV. Concurrently, the volume-imaginary
potential was taken to rise from zero at 10 MeV to 80 MeV where it took the T, 10 MeV
magnitude, and then remained constant to infinity (this energy extrapolation was used in the
above considerations). Further, the imaginary potential was assumed to be zero at the Fermi
Energy (Ep) and to have a quadratic energy dependence from E; to zero energy. The Fermi
energy was taken to be -7.0 MeV as determined from the mass tables (TUL90). Throughout, the
considerations, the entire imaginary potential was taken to be symmetric about the Fermi energy.

Following the above-outlined procedures and the methods of ref. (LS01), the above AJ_
value was calculated from the SOM. These calculations assumed the higher-energy branch of J,,
of Table III-A-1 as being more representative of the SOM and less distorted by deformation
effects,. The calculations provide the contribution of the imaginary potential that must be
reflected into the real potential due to dispersive effects.- The energy dependence of the fraction
of J, that is reflected into the real potential is illustrated in Fig. ITI-D-1. It decreases from near
unity at zero energy to modest negative values at 20 MeV. These magnitudes and energy
dependancies are somewhat dependent on the energy extrapolations cited above. This dispersive
fraction was converted to a potential fraction assuming the potential geometries of the SOM
potential (Table A-IT1-1).

Using the above “DISP” contribution the entire fitting of the SOM potential was repeated.
The resulting model parameters are given in Table D-III-1. They are similar to those of the
simple SOM (Table ITI-A-1). There are some changes in the real-potential geometry and the
. real-potential strength is noticeably reduced, as one would expect from the introduction of a
surface real potential. The corresponding calculated elemental thenium total cross sections are in
good agreement with measured values below 10-12 MeV, as illustrated in Fig. ITI-D-2, but then
fall a bit low, suggesting that the higher-energy portions of the potential employed in calculating
the dispersive contribution of Fig. ITI-D-1 is not quite correct. The dispersive calculations result
in the differential distributions that are essentially identical to those obtained with the SOM.
- The above SOM dispersive exercise was repeated using the ROTM, and resulted in the potential
parameters of Table ITI-D-2. These values are consistent with those of the simple ROTM
model given in Table III-C-1. They result in a reasonable description of the elemental thenium
total cross sections, as illustrated in Fig. III-D-3. The same is true for the calculated
differential “elastic” scattering from elemental thenium as illustrated in Fig. III-D-4. Though
dispersive effects may well be a physical reality, they do not have significant effects in the
present studies.

IV. BASIC AND APPLIED COMMENTS

The real radius of the SOM is small as observed in spherical models of the neutron
interaction with the neighboring rotational elements Ho and Hf [(Smi00) and (Smi01)].
Concurrently, unusual SOM energy-dependent imaginary-potential strengths and sizes are often
encountered, as in this rhenium case. - These are likely reflections of the inappropriateness of the
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SOM in such applications. The thenium ROTM real-potential geometries are similar to those of
elemental Ho and Hf [(Smi00); (Smi01)], to those reported for relevant regional models (You86)
and to systematics. For example, the systematics of ref.(Smi98) predict a Re a, within 7% of
that of the ROTM, and an r, within 0.8% that of the ROTM. The 1, of ref. (You87) differ from
those of the ROTM by only 1.2%, and the a, by only 4.2%. The present ROTM r,, is 2.6%
larger than that of Ho and Hf, and the a, 8.8% smaller. In these latter cases the imaginary

" parameters are not as well defined so one should expect larger differences. Generally, the

geometries of the present ROTM seem consistent with comparable rotational models in this mass
region.

The above experimental interpretations are limited to 10 MeV and less: At these energies
it was assumed that the absorption was entirely a surface phenomena. This is generally
consistent with regional and global trends, as illustrated in ref. (MY87) where the onset of
volume absorption is set at 9 MeV. The dispersion considerations, discussed above, introduced a
volume absorption at 10 MeV, slowly increasing with energy. It is used in the extrapolations of
the potentials to higher energies and may not be quantitatively valid. A more serious concern at
higher energies is probably the opening of additional neutron channels not considered in the
present interpretations. In fact, neither the shapes or magnitudes of surface and volume
absorptions are reasonably established at higher energies. Intuitively, one might expect that
absorption slowly makes a transition from a surface phenomena to a volume effect with
increasing energy, rather than attributing absorption to two independent components.

The isotopic-spin dependence of the optical model results in proton and neutron potential
strengths that are related to iso-spin through the expression

Ji=J(1%&mn) av-1)

where J; are potential strengths expressed as volume-integrals-per-nucleon, 1 is the nuclear
asymmetry (N-Z)/A, “i” may be either V or W for the real or imaginary potentials respectively,
the sign is “+” for proton processes and “-” for neutron processes, and §; is a constant (Lan62).
The “scalar” and “vector” potentials employed in the fitting of Sec. III-B are the frequently used
manifestations of Eq. IV-1. Neutron scattering studies lead to &, values near unity [(FCR77);
(HW72); (Smi98)]. However, those &, values are nearly twice those suggested from nucleon-
nucleon scattering and (p,n) studies. More accurately, Eq. TV-1 should be (Chi+90)

Jy= @)Ky (15 Eym)  IV-2

where Ky is a constant and r, has an appropriate mass dependence. Using an r, mass-dependent
expression such as (Smi98)

r,=1.1685+0.37225/A  IV-3

the neutron scattering data implies a &, of approximatély 0.5, similar to the values suggested
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from nucleon-nucleon scattering and (p,n) studies [(Chi+90); (GMP70) (GPT68); (BFG69)]
Eq. IV-1 is a reasonable starting point for comparing real-potential strengths over a limited mass
range, but the results may be seriously influenced by shell and collective structural effects. In
partlcular coupling effects in interactions with highly collective nuclei, as in the present work,
may very much distort the behavior predicted by Eq. IV-1 (Com79). Recent work by the author
has dealt with the fast-neutron interaction with three similar collective rotational targets;
elemental Ho (**Ho) (Smi00), elemental Hf (Smi01), and elemental Rh (the present work). The
average elemental nuclear asymmetries of these three targets are very similar, respectively 0.186,
0.193 and 0.195.  In each case the fast-neutron interaction was described in the context of a
rotational model coupling the first three states of the g.s. rotational band. The real potential
strengths for the three targets are; for Ho J, = 444.39 - 3.558- E, for Hf J, = 455.98 - 2.587-E,
and for Re J, =430.16 - 2.969-E. These are very similar values with an average at E = 0 of
443.5 % 1.7%. At 10 MeV, the upper energy of the respective interpretations, the average is
413.13 = 2.1%. Of, course, if one constructs the J,; of Eq. IV-1 the result will be essentially a
renormalisation of the three J,, values depending on the magnitude of £, one assumes. Because
of the similarities of the asymmetries and the J,, magnitudes, the measurements of the neutron
interaction with these three targets do not support nor refute Eq. IV-1 in the context of the real
potential. The magnitudes of the imaginary strengths deduced from the measurements of the
neutron interaction with the same three targets are; for Ho Jy, =22.4 +2.151-E, for Hf J,

19.5 +2.419E, and for Re J,, = 18.3 +2.258-E. Again, the three values are very similar, w1th a
Zero-energy average value of 20.0 = 6%, although there is a trend for the value to decrease with
asymmetry as indicated by Eq. IV-1. As for the ], values, they are consistent with Eq. IV-1 but
provide little further definition. Eq. IV-1 relates the strengths of potentials in neutron and
proton scattering. Unfortunately, the author could find no (p,p) scattering or (p,n) reaction data
relevant to this work in the literature, and neither could information specialists at the NNDC.

Dispersive effects doubtless are a factor in the neutron interaction with the isotopes of
thenium. With some simplifying assumptions, they were included in the above spherical and
rotational interpretations. Their presence did not notably improve the descnptlon of the
observables. There were some changes in the potential parameters (e.g., compare Tables ITI-C-1
and III-D-2), generally of a form that one would expect from the introduction of the dispersion
effect (e.g., some decrease inr,). However, from the practical point of view, there is little
justification for the additional complexity of the dispersion calculations in this particular case.

Attention was given to vector potentials in both a spherical and deformed context. Any
effect they might have had was very much masked by the unavoidable experimental uncertainties
in the data being analyzed. This conclusion is not surprising in view of the very similar
asymmetries of the two isotopes of thenium.

The above rotational potentials have energy dependencies that definé the effective mass,
m’, through the equation

(m"/m)=1-(dVYdE)  IV-3
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~ where m is the nucleon mass and V* the local real potential. This ratio is 0.667 for the above
ROTM potential given in Table INI-C-1. It is shown in refs.. [(BDS79); (MN81) and (Bau+82)]
that nonlocality leads to the expression :

(m"/m) = 0.64 + 0.36[1.0 + abs(E - Eg)/(2hW,)*  IV-4

where Eg is the Fermi energy and "W, = 41/A13. Well away from E; Eq. IV-4 leads to a (m"/m)
ratio of approximately 0.68 which is reasonably consistent with the nuclear matter estimate
(GPT68) and remarkably close to the value given by the present ROTM potential. Concurrently,
the zero end point of ROTM real potential is 148 MeV which approaches the value of the global
analysis of ref. (Bau+82). The above m" considerations apply to the other variants of the
rotational coupled-channels model discussed in Sec. III-C. Clearly, the energy dependencies of
- the various SOM formulations are inconsistent with the above concepts.

The above discussion of inelastic scattering (Sec. ITI-C) and Figs. ITI-C-3 and ITI-C-4
suggest that the , values for the two isotopes used in the primary ROTM calculations are 10-
20% too large. Alternatively, more complex coupling schemes-may be more appropriate, asin
ref. (Com79). Unfortunately, the measured neutron inelastic-scattering data is not of sufficient
quality or detail for a more quantitative examination of the degree of deformation. What is
needed is a careful set of measurements of the cross sections for the inelastic excitation of the
first few excited levels of both rhenium isotopes. Such measurements are feasible but
demanding.

V. SOME COMPARISONS WITH OTHER MODELS AND EVALUATIONS
V-A. COMPARISONS WITH OTHER POTENTIALS

There are a number of collective models of the fast-neutron interaction with nuclei in this
mass region reported in the literature. It is of interest to compare some of the corresponding
potentials to that of the ROTM of the present work. In making these comparisons a rotational
thenium model with the deformations of the ROTM (Table IIT-C-1) was assumed. The
cOrrespon‘ding strengths and geometries were taken as reported by the various authors. Nuclear
asymmetry was considered when given. These comparisons were confined to the total cross
sections at incident energies of < 20 MeV, and to differential “elastic” scattering at-energies of
4.5 to 10 MeV. Lower-energy scattering was not considered as those distributions are “bland”
and not particularly sensitive to choice of potential. Inelastic scattering was not considered as
there remains the question of the magnitude of the deformations. These potential comparisons
are intended to be illustrative and are confined to the following five potentials:-

A. The reference point was taken to be the present ROTM potential (Table ITI-C-1).

B. The potential for the neutron interaction with holmium by Smith (Smi00)..
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C. The pofential given by Macklin and Young (MY 86) in a study of rhenium neutron capture.
D. The potential for neutron total and scattering cross sections of hafnium (Smi01).

E. A general poten’tial for the fast-neutron interaction with holmium by P. Young (You86).

The fast-neutron total cross sections of elemental rhenium, as calculated with the above
potentials (A-E) are compared with the available experimental information in Fig. V-A-1,
Panel “A” of the figure references the ROTM of the present work. The calculated results are
arguably lower than the measured values by a percent or two in some energy regions. As
discussed in Sec. ITI, there are some questions about these small differences and the general
energy dependence of the experimental values from which it is not clear that these small
differences do not reflect experimental problems within the limited data base. Panel B of the
figure references potential B. That potential is largely based upon an interpretation of neutron
scattering from holmium over the energy range 4.5-10 MeV. Over that energy range it gives a
very good description of the rhenium total cross sections. The calculated total cross section
results are not quite as suitable at lower and higher energies but the differences between
calculated and measured values are relatively small (less than 5-6%). Panel C compares’
measured total cross sections with those calculated with potential C. The agreement is very
good, perhaps arguably better than obtained with the reference ROTM. The calculated total cross
sections tend to be slightly larger than the measured values over most of the energy range. Panel
D compares measured values with those calculated with potential D. The latter resulted from an
interpretation of total and scattering cross sections of elemental hafnium, largely below 10 MeV.
In the region of the primary scattering cross sections (4.5 - 10 MeV) the agreement is reasonably
good, but at lower energies the calculations deviate from the measured rhenium values by large
amounts. This reflects the physical reality that the measured hafnium and rhenium total cross
- sections are very different in this energy region. Panel E compares measured total cross sections
with those calculated with potential E. Potential E is a regional representation and thus is not as
~ specifically suitable as either the reference potential A or the specific rhenium potential C. These
total-cross-section comparisons suggest, not surprisingly, that specific potentials based upon the
rigorous interpretation of measured values are most suitable for total-cross-section prediction.
Also, there are structural differences between nearby targets that can have a considerable effect
on the corresponding potentials and their prediction of total cross sections. Unfortunately, in the
case of rhenium experimental knowledge of neutron total cross sections is meager, and
nonexistent above 15 MeV. Given the present experimental situation, the reference potential A
(ROTM) or potential C give the best representations of rhenjum total cross sections of the five
potentials considered here.

The same type of comparisons are made between measured and calculated “elastic”
scattering in Fig. V-A-2. The experimental reference is again the 4.5-10 MeV scattering data of
the present work. There is no higher-energy experimental information and the lower-energy
measured values lack the “character” for reasonable comparisons. The same A through E
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potentials cited above are used, with “A” ( ROTM) taken as the reference. It is evident from
panel A of Fig. V-A-2 that the ROTM of the present work gives an excellent description of the
measured values as discussed in Sec. III-C. The calculated distributions combining elastic and
first two inelastic groups are in nearly exact agreement with measured values which have a
corresponding experimental resolution. The agreement for potential B, as shown in panel B of
the figure, is also good. This is perhaps not surprising as potential B was largely deduced from
differential scattering measurements in this energy range. Potential C does well in describing
the total cross sections but it is not particularly suitable for describing the differential scattering (
panel C). Potential D is an improvement, as illustrated in panel D. Like potentials A and B, its
derivation was very much dependent on differential scattering in the 4.5 to 10 MeV region. The
total-cross-section problems at lower energies do not persist into the scattering distributions at
the energies of Fig. V-A-2. Finally, the general E potential (panel E) provides scattering
distributions that are not as consistent with experimental observations as are those from
potentials A or B. The latter was explicitly derived from holmium scattering data while potential
E has a more generalized background.

Comparisons of measured and calculated (ROTM) inelastic neutron-scattering excitation
functions were discussed in Sec. ITI-C and illustrated in Fig. ITI-C-3. That discussion points out
that the evident over-prediction of inelastic-scattering excitation functions suggests that the B,
deformations used in the above comparisons are perhaps 15% too large. It is not productive to
test potentials in the context of inelastic scattering until the deformations are better known.

The above comparisons of measurements and calculations suggest that several general
regional potentials will give reasonable calculational results. However, potentials developed for
neighboring nuclei are not always suitable for quantitative results. One should be cautious when
using regional or generalized potentials in this mass region. When highly quantitative results are
sought there is no substitute for a solid experimental basis for the development of
models for interpolation and extrapolation. In the case of rthenium, such a data base is very
meager. '

V-B. COMPARISONS WITH SOME EVALUATED FILES

There are a number of evaluated neutronic file systems for applications studies distributed
around the world. Most of them are devoid of either elemental or isotopic rhenium evaluations,
or utilize older versions of the ENDF/B files. This may reflect low world-wide interest in
neutronic systems containing thenium. The ENDF/B-VI system does have recently upgraded
18Re and '*"Re isotopic evaluated neutronic files. These can be compared with relevant portions
of the present work. '

Elemental neutron total cross sections constructed from the ENDF/B-VI 1sotopic files are

in very close agreement with what is experimentally known as, illustrated in Fig. V-B-1. The
differences between measured and evaluated results is no more than several percent and then
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- largely in regions where the experimental values (particularly their energy dependencies) are
suspect, as noted elsewhere herein. These evaluated and measured results are in very close
(essentially exact) agreement with the above ROTM model, as shown. Minor differences
between the model and the evaluation become evident only at energies approximately twice those
of the present studies. .

The present ROTM isotopic elastic-scattering is compared with the isotopic values of
ENDF/B-VIin Fig. V-B-2. Over the energies of the present studies (below 10 MeV) the
agreement between the present ROTM results and the isotopic values of ENDF/B-VI is within a
few percent, or within the experimental uncertainties alone. Above approximately 10 - 12 MeV
the isotopic extrapolation of the ROTM results in “elastic” cross sections that are increasingly
larger than the evaluated quanities. As pointed out above, the present work is strictly valid only
at energies of less than 10 MeV, and the present considerations assume only neutron total and
scattering cross sections are significant. Well above 10 MeV, the latter assumption breaks down,
for example at approximately 15 MeV the (n,2n) cross sections alone exceeds several barns.
Thus it is mot surprising that the evaluated elastic-scattering cross sections are smaller than those
predicted by the present model well above 10 MeV. Comparisons of measured, calculated and
evaluated inelastic-scattering cross sections are difficult due to the uncertain experimental cross
sections and resolutions. However, ENDF/B-VI reasonably represents the inelastic-scattering
cross sections of the first few excited states as illustrated in Fig. V-B-2. This résult is bit
surprising as most of the models use deformations that tend to over-predict the excitation of this
first level of the g.s. rotational band, as illustrated in Fig. ITI-C-3. The rational underlying the
ENDF/B-VI evaluation is not known to the author. However, this particular inelastic-scattering
cross section was already reasonably defined by the early experimental work of ref, (SGW683),
well before the evaluation.

Possibly, in time some improvement of thenium evaluations can be achieved through
improved modeling and better understanding of neutron-reaction systematics in the rhenium
mass region. However, major improvements are probably going to require some comprehensive
measurements.

VI. CONCLUDING REMARK

There should be no misunderstanding, the experimental knowledge of the fast-neutron
interaction with rhenium, and neighboring nuclei, is in very sorry shape. Even the total cross
sections of rhenium are poorly known. Some of the desired measurements are difficult, but many -
of them involve the application of well-known techniques. The problem is that the facilities and
professional skills necessary to provide the requisite information are vanishing, and even the
limited knowledge available is fading. With thig lack of experimental information, recourse is
made to regional or global calculational models to provide information for applications.
However, particularly in this deformed mass region, the results are very sensitive to nuclear
structure effects. The models are most effective when they are used for interpolating between
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 measured values.

As in a number of other cases, the experimental knowledge of rhenium (p,n) and (p,p)
processes is largely nonexistent, or is lost in the mists of time. This makes it difficult or
impossible to assess some of the fundamental physical properties, particularly those dealing with

iso-spin.
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APPENDICES
A-1. PRIOR NEUTRON TOTAL-CROSS-SECTION DATA

There are only five references giving neutron total cross sections of rhenium or its
isotopes that are relevant to the present considerations. These results are illustrated in Fig. A-1.
Given the sparsity of experimental information, the experimental results are qualitatively
consistent within themselves and with the ENDF/B-VI evaluation. However, it would be well to
have several verification measurements below energies of approximately 15 MeV, and nothing
seems to be known at higher energies. . All of the relevant results from the literature are for
elemental rhenium.

(SMS76) D. Stupegia, A. Madson and M. Schmidt, private communication, 1976 (¥12125,
asterisks denote EXFOR numbers). Many monoenergetic-source results extending from
approximately 10 keV to 1.9 MeV. Resolutions 10-20 keV.

(T'S68) R.Tabony and K. Seth, Ann. Phys. 46 401, 1968 (*11953). Many monoenergetic results
extending from approximately 30 to 650 keV. Resolution several keV. :

(SGW68) A. Smith, P. Guenther and J. Whalen, Phys. Rev. 168 1344,1968 (*10631). Many
monoenergetic results extending from approximately 0.5 to 1.5 MeV. Resolution a few keV.

(DV72) W. Dilg and H. Vonach, EANDC(E)-150 40, 1972 (*20583). A single value at 3 keV.

(FG71) D. Foster and D. Glasgow, Phys. Rev. C3 576, 1971 ( #10047). Detailed white-source
results with many values distributed between approximately 2.2 and 14.9 MeV.

A-2. PRIOR NEUTRON ELASTIC—SCATTERIN G DATA

There appear to be only two measurements of neutron “elastic” scattering from rhenium
or its isotopes; 1) A. Smith, P. Guenther and J. Whalen, Phys. Rev. 168 1344,1968 (*10631); and
2) V. Nikolenko, A. Popov arid G. Samosvat, INR-P3 85 133,1985 (*40937); again, numbers
preceded by the asterisk are EXFOR reference numbers). The former gives comprehensive
coverage from 0.3 to 1.5 MeV with a number of scattered-neutron angular distributions. The
latter reference presents some low-energy pulsed-reactor data and only very fragmentary
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differential information at approximately 450 keV. Before the present results, knowledge of
“elastic” neutron scattering from rhenium or its isotopes was essentially limited to the energy
range 0.3 - 1.5 MeV and one set of measurements.

A-3. PRIOR NEUTRON INELASTIC-SCATTERING DATA

Prior measurement of neutron inelastic scattering from rhenium and/or its isotopes is
limited to one reference; A. Smith, P. Guenther and J. Whalen, Phy. Rev. 168 1344, 1968 _
(*10631). That work is more than 35 years old and confined to incident energies of less than 1.6
MeV. Interestingly, that early inelastic-scattering work suggested shortcomings in the
contemporary knowledge of the excited structure of thenium, particularly **Re. These
deficiencies have been largely removed through later structure work, as summarized in the
Nuclear Data Sheets.
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TABLES

Table III-A-1:- Parameters for the SOM potential. Particle energies (E) and potential
strengths (V and W) are given in MeV and geometries in fermis. Approximate strengths in
volume-integrals-per-nucleon (J) are in units of MeV-fm’. This is entirely an iso-scalar
potential:- i.e., V;=W =0 of Eq. III-B-1.

Real Potential

Strength
V =45.931-0.04937-E
Jy = 380.02 - 0.4085'E
Reduced Radius
- 1,=1.2196
Diffuseness
a, = 0.6607

Imaginary Potential

Strength
W =14.713 - 1.9038-E, for E less than 5.62 MeV
J, = 79.18 - 8.73-E
W =2.0750 + 0.34392E, for E greater than 5.62 MeV
J, = 11.17+3.91-E
Reduced Radius
r, = 1.3384
Diffuseness
a, = 0.3391 + 0.02293-E

_Spin-Orbit Potential (WG86)

Strength :
V,=6.157-0.015E
Reduced Radius

r,=1.103
Diffuseness

a, = 0.56
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Table III-B-1:- Parameters for the SOMYV potential. Particle energies (E) and potential strengths
(Vand W) are given in MeV and geometries in fermis. Approximate strengths in volume-
integrals-per-nucleon (J) are in units of MeV- fm®. This is an iso-vector potential with V,=16
MeV and W, = 8 MeV. :

Real Potential:

Strength
V =49.930+ 0.20568'E
Jy = 38578 +1.5892-E
Reduced Radius
r, = 1.1920
Diffuseness
a, = 0.6467

Imaginary Potential

Strength
W =14.245-1.5217'E, for E less than 6.165 MeV
Jy = 78.74-5.78E
W =3.6126 + 0.20257'E, for E greater than 6.165 MeV
, Jo = 19.97 +4.19-E '
Reduced Radius
r, = 1.3409
Diffuseness
a, = 0.3469 + 0.03291-E

Spin-Orbit Potential is as given in Table ITI-A-1 (WGS6).
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Table ITI-B-2:- Parameters for the SOMV potentlal Partlcle energies (E) and potential strengths
(V and W) are given in MeV and geometries in fermis. Approximate strengths in volume-
integrals-per-nucleon (J) are in units of MeV-fm>. This is an iso-vector potential with V, =24
MeV and W, =12 MeV.

Real Potential

Strength
V =51.729 + 0.23137°‘E
Jy = 392.59 + 1.7560'E
 Reduced Radius
r, = 1.1864
Diffuseness
a, = 0.6286

Imaginary Potential

Strength
W =16.796 - 1.8332-E, for E less than 6.27 MeV
J, = 89.57-5917E
W =4.1190 + 0.19007-E, for E greater than 6.27 MeV
J, = 21.96 + 4.90-E '
Reduced Radius
I, = 1.3542
Diffuseness
a, = 0.3284 + 0.03822E

Spin-Orbit Potential is the same as give in Table ITI-A-1. (WGB86)
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Table ITJ-C-1:- Parameters for the elemental rotational coupled-channels model (ROTM)
potential. Particle energies (E) and potential strengths (V and W) are given in MeV and
geometries in fermis. Approximate strengths in volume-integrals-per-nucleon (J) are in units of
MeV-fm?. : '

Real Potential

Strength
V=48.218 - 0.33286°E

Jy = 430.16 - 2.9694-E
Reduced Radius
r, = 1.2446
Diffuseness
a,= 0.6035

Imaginary Potential

Strength
. W=2.7928 + 0.34516°E
J,= 18.27+2.2580-E
Reduced Radius
r, = 1.2934
Diffuseness

a,= 0.4376

Spin-Orbit Potential is the same as that of Table ITI-A-1 (WGS6)

Deformations
15Re B;=0.22 B,=-0.085
¥Re B,=021 B,= -0.085
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Table ITI-C-2:- Parameters for the "*'Re rotational potential, as described in the
text. The nomenclature is the identical to that of Table I-C-1.

Real Potential

Strength
V =48.934 - 0.3638E
Jy= 4282-3.184E
Reduced Radius
r,= 1.2366
Diffuseness
‘a,=0.6011"

Imaginary Potential

Strength
W =2.5507 + 0.36422-E
J., = 16.53 +2.3561E
Reduced Radius
- r1,=1.2603
Diffuseness
a, = 0.4557

Spin-Orbit Potential is the same as that of Table III-A-1 (W G86)

Deformations are same as Table III-C-1
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Table III-C-3. Correlation of observed inelastic-scattering excitation energies in MeV (Column
A) with reported (NNDC) excitations in '**Re (Column B) and in '*Re (Column C).

No.

0

- Column A.

0.0

0.130
0.214
Q.295
0.386

0.505

0.635

Column B
0.0, 5/2+
0.125, 7/2+
0.284, 9/2+

0.368, 9/2-

0475, 11/2+

0.547,11/2-

0.646, 1/2+
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Column C
0.0, 5/2+
0.134, 7/2+
0.206, 9/2-
0.303, 9/2+ |
0.390, 11/2-
0.511, 1/2+
0.582, 5/2+
0.589, 3/2+
0.618, 3/2+

0.625, 172+
0.647, 5/2+



Table III-D-1:- Parameters for the SOM potential with dispersive contributions, as described in
the text. The nomenclature is identical to that of Table ITI-A-1.

Real Potential

Strength :
V =43.587-0.61101-
" J, = 321.14 - 45017-E

Reduced Radius
r,=1.1802

Diffuseness
a, = 0.6549

Imaginary Potential

Strength
W =22.754 - 3.3575°E, for E less than 5.72 MeV
Jw= 8522 -8.53-E
= 1.5256 + 0.35369-E, for E greater than 5.72 MeV
Jw = 14.40 + 3.848-E

Reduced Radius
r,, = 1.3361
Diffuseness
a, = 0.2742 + 0.03234-E

Spin-Orbit Potential the same as given in Table ITI-A-1. (WG86)
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Table III-D-2:- Parameters for the ROTM with dispefsive contributions, as described in the
text. The nomenclature is identical to that of Table ITI-C-1.

Real Potential

Strength
V =48.199 - 0.30699-E
Jy = 411.68 - 2.6469-E

Reduced Radius
r,= 1.2277

Diffuseness
a, = 0.5768

. Imaginary Potential
Strength
W =3.2946 + 0.34156'E
Iy = 20.13 + 2.0869-E

Reduced Radius
r, = 12734

Diffuseness
a, = 0.4217

Spin-Orbit Potential is the same as that of Table III-A-1. (WG86)

Deformations as per Table III-C-1.
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Fig. II-1. Measured elemental Re differential-scattering cross sections. The experimental
values are noted by symbols and curves indicate the results of fitting the measured values with
- - legendre-polynomial expansions, Incident neutron energies, in MeV, are numerically noted.
- Throughout this work data are presented in the Iaboratory coord:mate system.
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.

Fig, II-A-1. Companson of measured (symbols) and SOM-calculated (curve) neutron total
Cross section of elemental rhenium.
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Flg I-A-2. Compérisons of measured (symBols) and SOM-calculatgd (curves) scattered-
neutron “elastic” distributions (curves) of elemental rhenium. Incident-neutron energies are
numetrically noted in MeV. '
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Fig. IlI-B-1. Measured (symbbls) and calculated (cui've) total cross sections of elemental

thenium. The calculations are based upon the SOMV potential of Table III-B-1. V/W, = 16/8
MeV.
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Fig. II-B-2. Measured (symbols) and calculated (curves) differential “elastic” scattering from
elemental Re. The calculations used the SOMV potential of Table II-B-1 with V/W,=16/8

MeV.
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Fig. Ii-C-1. Companson of measured (symbols) and RO'IM-calculated (curve) nentron total
cross section of elemental rhenium. The calculations employed the elemental potentlal of Table
IlI-C-l as described in the text. :
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Fig. IN-C-2. Comparison of measured (symbols) and calculated (curves) scattering
distributions of elemental rhenium. The calculations employed the ROTM of Table INI-C-1.
Incident neutron energies are numerically cited. A single curve at a given energy represents
simple calculated elastic scattering. At energies with two curves, the elastic (lower) and
elasticHfirst-inelastic excitation of the g s. rotational band (upper) are represented. At energies
with three curves, the first represents simple calculated elastic scattering (lower), the second the
~ elastic+first inelastic distribution, and the third the elastic+the first two inelastic contributions -
from the g.s. rotational band. B ‘
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Fig. III-C-3. Measured (symbols) and calculated (curves) inelastic-excitation cross sections of
elemental rhenium. The calculations were based upon the ROTM potential of Table IN-C-1.
The excitation energies 1 through 6 are correlated with reported level structure in the two
isotopes of rhenium in Table II-C-3. :
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Fig. I]I-C-4 Comparison of measured (symbols) and calculated (curve) cross sections for the
inelastic neutron excitation of the first excited levels in the two isotopes making up elemental
thenium. The calculations used the reduced [32 deformations and assomated parameters as

discussed in the text.
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Fig. INI-D-1. The fraction of the imaginary potential strength (DISP) that will be reflected into
the real potential. These are the values of the ratio AJ,,/J,, of Eq. ITII-D-2 as a function of
energy. : '
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_Fig. III-D-Z-_.. Comparison of '}neaSured (symbols) and calculated (curve) total cross 'sections of
elemental rhenium. The calculations used the dispersive potential of Table INT-D-1.
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Fig. INI-D-3. Comparison of measured '(sy'thbols) and calbulated (curve) total cross section of
elemental- rhenium. The calculations used the dispersive rotational potential of Table III-D-2.
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Fig. HI-D-4. Comp‘arisbn of measured (symbols) and calculated (curves) differential “elastic”
scattering of elemental thenium. The calculations used the dispersive rotational potential of
Table II-D-2. The nomenclature of the figure is similar to that of Fig. m-C-2.
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Fig. V-A-1. Illustrative cdmparisons of measured (symbols) and calculated (curves) neutron
total cross sections of elemental rhenium. Sections A to E of the figure correspond to potential
variants discussed in the text. ‘
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‘Fig. V-A-2, Comparisons of measuréd (symbols) and calculated (curves) diﬂ'erential-scattering :
distributions. Panels A through E correspond to the potentials defined and discussed in the text.
The nomenclature of the figure is identical to that of Fig, III-C-2.

0 %0 1800 90 1800 9 180




Fig V-B-1. Comparison of measured (“+” symbols), calculated (ROTM, curve with “x”
symbols), and ENDF/B-VI evaluated (curve thh “o” symbols) neutron total cross sections of
elemental rhenium.
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Fig. V-B-2. Upper panel:- Compatison of evaluated and calculated elastic-scattering cross
sections of '*Rh. The curve with “x” symbols indicates the results of ROTM calculations, while
the curve with “o” symbols denotes the ENDF/B-VI evaluation. The middle panel is the same as
the upper panel, but referenced to the "*'Re isotope. The lower panel compares the
experimental results (symbols) for the inelastic excitation of the. first excited level of the g s.
‘rotational band with the elemental results implied by the ENDF/B-VI isotopic files (curve).
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Fig A-1. The elemental thenium total cross section data base (symbols) and the END/B-VI
evaluation (curve).
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