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measurements, c) the analysis, correlation and interpretation of nuclear data, and d) the 
compilation and evaluation of nuclear data.  Contributions to this Series are reviewed to 
assure technical competence and, unless otherwise stated, the contents can be formally 
referenced. This Series does not supplant formal journal publication, but it does provide 
the more extensive information required for technological applications (e.g., tabulated 
numerical data) in a timely manner. 
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including abstracts, complete reports, and associated computer programs. 
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Remark on:-                                                                                         

THE NEUTRON SPHERICAL OPTICAL MODEL ABSORPTION 

by 
Alan B. Smitha,b 

aNuclear Engineering Division, Argonne National Labortory 
bThe Physicists Consultive, Ottawa, IL. 

Keywords:- The properties of the optical-statistical and coupled-channels models in the 
region of the doubly closed shell at A = 208 are examined with particular attention to the 
energy dependence of the imaginary potential.  A new imaginary potential shape is 
proposed. 

Abstract 

The energy-dependent behavior of the absorption term of the spherical neutron optical 
potential for doubly magic 208Pb and the neighboring 209Bi is examined.  These 
considerations suggest a phenomenological model with an intuitively attractive energy 
dependence of the imaginary potential that provides a good description of the observed 
neutron cross sections and that is qualitatively consistent with theoretical concepts.  At 
the same time it provides an alternative to some of the arbitrary assumptions involved in 
many conventional optical model interpretations reported in the literature and reduces the 
number of the parameters of the model.   

I. Introductory Comment 

For many years the Pauli exclusion principle and other fundamental physical 
considerations have suggested that the optical model absorption at low energies is 
primarily in the nuclear surface region, and extends into the target interior as the incident-
particle energy increases (e.g. Hod63, Hod94, Elt61, Pau41, Gom59).  The onset of the 
transition from primarily surface to volume absorption seems to occur at relatively low 
bombarding energies, e.g. at several tens of MeV or less.  That is an energy region that is 
largely forbidden to charged-particle measurements by the coulomb barrier, and thus the 
wealth of experimental charged-particle scattering data is of only marginal value in 
defining the low-energy behavior of the optical model potential. Recently the 
experimental knowledge of neutron total and scattering cross sections of 208Pb and 209Bi 
has appreciably improved and thus quantitative neutron model assessments in the context 
of these two nuclides are more attractive.  The large majority of target nuclei are multi-
isotopic and/or have collective characteristics that preclude simple and unequivocal 
spherical optical model interpreta  tions.   The situation is further complicated by the 
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prevalence of partially resolved resonance structure at relative low energies (particularly 
for lighter-mass targets) that is inconsistent with the energy-average concept of the 
optical model (Fes58, FPW54, Hod63).  Also, knowledge of the energy dependence of 
the potential remains no more than qualitative (Lan62, Pas67, Hod63, Per63). There is 
only one spherical T = 0 target nucleus, 40Ca, for which there is a wide range of neutron 
scattering and total cross section data, and where the mass is heavy enough to permit the 
determination of the energy-averaged cross-section behavior at lower energies in a 
manner consistent with the concept of the optical model. The spherical neutron optical 
model of 40Ca will be discussed by the author elsewhere.  208Pb is doubly magic and the 
nuclear asymmetry η = (N−Z)/A is 0.212. This implies that iso-spin effects must be 
considered in making global comparisons with 208 Pb based optical models.  The 208Pb 
neutron total cross sections are now well known to 500+ MeV, and differential elastic 
scattering is reasonably known from the discrete resonance region to ≈ 40 MeV. 
However, there remains a wealth of detailed compound-nucleus resonance structure at 
energies below ≈ 5 MeV that must be averaged before comparing with optical model 
values. 209Bi is only one proton from the same doubly-closed shell and thus nearly 
spherical, with a nuclear asymmetry of 0.206 which is essentially identical to that of
208Pb. The 209Bi neutron total and elastic-scattering experimental database is more 
extensive than that of 208Pb. Its measured total cross sections extend in detail to well 
above 500 MeV. Elastic-scattering measurements with results of good quality are 
available to ≈ 25 MeV. These 208Pb and 209Bi experimental neutron databases are 
outlined below.   

II. Neutron Spherical Optical Model (SOM) 

In the beginning, a simple spherical optical-statistical model (Fes58, FPW54, 
Hod63, Wol51) giving a reasonable description of the fast neutron interaction with 208Pb 
and 209Bi is sought as a basis for further investigating physical properties exhibited in the 
fast-neutron interaction with these nuclei.  The 208Pb target should be spherical to a rather 
high order due to its doubly-closed shell structure. 209Bi should also be essentially 
spherical as it consists of a f7/2 proton added to the doubly-closed-shell core.  From this 
SOM basis more detailed physical aspects of the neutron interaction can be explored.  
This initial foundation should be soundly based upon the physically observed processes 
which, at lower energies, are primarily fast-neutron total and scattering cross sections.  

II-A. Conventional SOM Potential 

The present considerations are extensions of the conventional spherical surface-
absorption neutron optical model.  Therefore, it is important that this underlying 
foundation be clearly established, particularly as there are an unfortunate number of miss-
statements and outright errors in the literature, spread over approximately half a century.  
The underlying potential form used here is (Hod63,  OR82, Elt61, Rap82, GPT68):- 

V(r) = U f(ru) + iWv f(rwv) + iWs g(rws)] + 
Uso ( h/μπc )2 (1/rso) d/drso [fso(rso)] σ•l , (II-A-1) 
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Where U = real-potential depth, Wv = the volume-imaginary depth, Ws = the surface-
imaginary depth, and Uso = the spin-orbit depth.  f(ri) is taken to be the Saxon-Woods 
form

 f(ri) = 1/[1 + exp((ri – Ri)/ai)] (II-A-2) 

and g(r) to be the Saxon-Woods-derivative form

 g(ri) = − 4 bW d/dr[(1 + exp(( r − RW)/bW))-1], (II-A-3) 
or thus 

g(ri) = 4 exp((r – RW)/bW)/(1 + exp((r – RW)/bW))2 . (II-A-4) 

where rU = reduced real radius, aU = real diffuseness, the real radius RU = rU A1/3 (A ≡ 
target mass in AMU),  the imaginary radius RW = rW A1/3, where rW = reduced 
imaginary radius, and  bW = the imaginary diffuseness.  As will become clear in the 
following considerations, WV  is set identically to zero throughout the present 
considerations unless otherwise explicitly stated.  The spin-orbit term is of the Thomas 
form and real (no imaginary spin-orbit component).  Associated real and imaginary 
potential integrals-per-nucleon are (e.g. see Elt61, Ols+82, Hod63, Rap82), 

JU/A = (4/3) π (RU
3/A) U [1 + ((πaU)/RU)2] (II-A-5) 

JW/A = ((16 π RW
2)/A) bW W [1 + (1/3) ((πbW)/RW)2]. (II-A-6) 

The real and imaginary RMS radii are 

<RU
2>1/2 = [(3 RU

2 + 7 π2aU
2)/5]1/2                                     (II-A-7) 

and 

<RW
2>1/2 = {12 b RW [1 + (πb/RW)2] (JU

0/JW
0)}1/2, (II-A-8) 

where JU
0 and JW

0 are the values given by Eqs. II-A-5 and II-A-6 with U = W ≡ 1. 

Comparisons with results obtained with appreciably different target masses should 
always consider iso-spin effects where V = V0 ± ηV1, W =  W0 ± ηW1, ("+" for protons 
and "−" for neutrons) and η ≡ (N−Z)/A (Lan62). However, the present considerations are 
limited to 208Pb and 209Bi targets which have essentially identical η values ( i.e. 0.212 and 
0.206, respectively). The above simple spherical model does not consider dispersion 
contributions which fundamentally couple real and imaginary potentials (Sat83, Lip66, 
Pas67, Fes58, JLM77), as discussed elsewhere in this note.  The above formalism also 
does not address collective effects and the associated deformations and direct 
interactions.  Both 208Pb and 209Bi are known to have collective quadrupole vibrational 
states at relatively low energies (NDS).  However, the respective deformation parameters, 
β3, are small so it is reasonable to initially ignore the neutron vibrational coupling, as in 
the context of the spherical optical model.  Coupled-channels interpretations of the 
neutron interactions with the collective properties are discussed elsewhere in this note. 
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 II-B. An Additional SOM Concept 

The primary thrust of the present considerations is the introduction of an additional 
and novel model concept. Conventionally, the imaginary-potential  diffuseness is taken 
to be symmetric about the imaginary radius RW, as defined by Eqs. II-A-3 and II-A-4. 
The concept of an asymmetric imaginary diffuseness is introduced here, where “bW” may 
have different values (bWi) interior to and (bWo) exterior to the imaginary radius RW. 
This asymmetry of the surface absorption potential is here defined as  

ASYM ≡ 1 + K•E, (II-B-1) 

where “K” is a constant and bWi = ASYM • bWo. This concept provides for a progressive 
linear extension of the surface absorption into the interior of the nucleus with energy ( i.e. 
a surface absorption growing linearly toward volume absorption with increasing energy).  
Eq. II-B-1 is a simple linear of approximation of such an effect.  Of course, more 
complex energy dependencies may be introduced. This transition in the shape of the 
surface absorption with "K" is illustrated by the relative distributions shown in Fig. II-B
1. The concept replaces a minimum of four parameters associated with parameterizations 
using the conventional volume absorption potential  (volume potential strength, radius, 
diffuseness, energy dependence of strengths and geometries and the threshold) with the 
single parameter "K".  This is a prominent advantage in the use of an optical potential 
already overloaded with parameterization. 

III. Experimental Data Base 

III-A-1. Measured 208Pb neutron total cross sections. 

An examination of National Nuclear Data Center (NNDC) files revealed a modest 
number of 208Pb experimental neutron total-cross-section references (FG71, Day65, 
FC62, GM67, Far+65, Fin+93, Har99, Car+91 and Duk+67).  Fortunately, several of 
these data sets are very large and, all appear of good quality.  Altogether there are a total 
of ≈ 19500 individual total cross-section values relevant to the present considerations.  
These results were combined into one large set and carefully culled by graphical 
inspection. At low energies resonance effects are reported with varying energy 
resolutions and energy scales leading to some discrepancies, but the average energy-
dependent trends appear reasonably consistent. Only three individual values were felt to 
be erroneous and were abandoned. The remaining values were energy ordered and 
averaged over 50 keV intervals below 0.5 MeV, over 100 keV intervals from 0.5 – 5.0 
MeV and over 200 keV intervals at higher energies in order to provide averaged values 
reasonably consistent with the underlying concepts of the optical model.  Resulting 
averaged cross-section values are illustrated in the four panels of Fig. III-A-1-1.  The 
residual fluctuations resulting from the averaging of the gross resonance structure are 
evident below ≈ 5.0 MeV. These averaged measurements extend up to incident energies 
of ≈ 600 MeV. They are compared with the corresponding ENDF/B-VI values in Fig. 
III-A-1-2. The evaluation uses resonance parameters to represent the total cross sections 
below ≈ 1.0 MeV and a point-wise cross-section representation at higher energies.  The 
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evaluation is consistent with the present experimental averages up to the 150 MeV upper 
energy limit of the evaluation.  Compound-nucleus resonance structure is clearly evident 
in the evaluation and it may persist in the energy-averaged total cross sections resulting in 
small fluctuations at lower energies.  This may contribute to the systematic intermediate 
structure near 3 MeV suggested by several authors (e.g. Ols+82).  In addition, at lower 
energies the measured total-cross-section magnitudes may be distorted by self-shielding 
effects. It is not always clear that these were given attention in the experimental 
measurements.  They can result in serious distortions. 

III-A-2. Measured 209Bi neutron total cross sections 

The NNDC files were similarly searched for fast-neutron total cross sections of 
elemental bismuth (209Bi). Nearly 20000 individual values were found, of which more 
than 14000 were relevant to the considerations of the present work.  They extend from 
incident energies of ≈ 10 keV to a few GeV. With the majority of the values below 
several MeV the experimental resolution is often relatively good in order to define the 
structure in the unresolved resonance region.  The respective references are ACQ53, 
Ang+71, BBP49, Bes+92, BPS58, CB67, CGB52, CHH55, Cie68, CW59, Das+90, 
Day65, DH53, Div68, DM58, Dri+73, Duk+67, Fin+93, FLM63, Fra88, Gib+56, 
Gio+78, GLM67, Goo62, GSW80, Gue+89, Gua+92, Har+72, HL55, HS77, HWH75, 
HL50, FG71, Maz+55, Kha56, KMM57, KVJ72, LR53, Man65, MEF55, Mil+52, ND53, 
Ort75, PBS60, SBN67, Sch+73, Sin+76, Smi+70, SW54, Tut+65 and WB55.  With a 
very few exceptions, the measured values are relatively consistent.  This is surprising, 
particularly in the lower-energy and fluctuating region where small changes in 
experimental resolutions and/or energy scale can lead to large differences.  The 
experimental database was ordered by increasing energy and a very few obviously 
discrepant values removed as a result of graphical inspection.  This culled result was then 
energy averaged to combine measured values and produce energy-averaged experimental 
total cross sections consistent with the physical concepts of the optical model.  The 
energy-averaging increments were again:- i) 50 keV at incident energies of less that 0.5 
MeV, ii) 100 keV for energies of 0.50 to 5.0 MeV, and iii)  200 keV at all higher 
energies. These averaged results are indicated by “+” symbols in the four panels of Fig. 
III-A-2-1. The four panels of Fig. III-A-2-2 compare the present energy-averaged 
results with the 209Bi ENDF/B-VI evaluated neutron total cross sections up to the 20 MeV 
upper limit of the evaluation.  The agreement is very good.  This is not surprising as, 
above the highly fluctuating region, the evaluation was constructed in the same manner as 
used in the present work, from much the same data (Gue+89). Again, self-shielding 
effects may have distorted some of the experimental values at lower energies.   

The above energy-averaged 209Bi and 208Pb total cross sections are remarkably 
alike as indicated by the percentage deviations between them as a function of energy 
shown in Fig. III-A-2-3. On the average the 209Bi values are slightly larger than those of 
208Pb with energy, from a fractional percent at low energies to 1.5 – 2 percent at 600  
MeV. Nuclear size effects suggest that the 209Bi values should be about 0.3% larger than 
those of 208Pb.  The evident “ripples” above the low-energy resonance region have the 
character of statistical fluctuations.  At very low energies there are larger fluctuations due 
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to the persistent influence of incompletely averaged resonance structure.  There remain 
some minor fluctuations in the energy averaged bismuth data near 3.0 MeV that may 
indicate intermediate structure as suggested in ref. Ols+82. The total cross sections are 
apparently not very sensitive to the quite different structure of the 208Pb and 209Bi targets. 

III-B-1. Measured 208Pb elastic scattering cross sections. 

The NNDC files contain sixteen references (AFD85, BKF72, Blo+03, Day71, 
Del+83, Dev80, Fin+84, Flo81, Fow66, GHS78, Hao+82, Han+85, KP74, Osb+04, 
Rap+78 and Rob+91) to fast-neutron elastic scattering from 208Pb, relevant to the present 
considerations. They represent 82 differential distributions distributed between incident 
energies of ≈ 0.5 and 96.0 MeV. At some of the higher energies the angular coverage is 
minimal, with the results limited to very forward angles (e.g. less than 10−15 degrees). 
This is exclusively so above incident-neutron energies of ≈ 40 MeV (Osb+04). This 
high-energy behavior, combined with the scatter of the measured data, does not make for 
reasonable legendre polynomial and/or model fitting, and acceptable angle-integrated 
elastic-scattering cross sections.  Thus, all such distributions were ignored and the 208Pb 
model considerations limited to incident energies of ≤ 40 MeV, though the resulting 
potentials may extrapolate to higher energies.  The measurements extend over nearly half 
a century, and often had quite different objectives.  For example, Fowler (Fow66) reports 
a very nice set of high-resolution elastic distributions below 1.8 MeV, arranged to 
optimize resonance interpretations.  In the same incident-energy region the measurements 
of Guenther et al. (GHS78) were directed toward the determination of the energy-
averaged scattering cross sections more consistent with the concepts of the optical model.  
These goals are quite different, even conflicting, but they provide the majority of the 
differential elastic-scattering information in the fluctuating region below several MeV.  
Because of the fluctuations, the experimental differential-elastic cross sections at energies 
of ≤ 2 MeV were averaged over approximately 100 keV incident-energy intervals for the 
present model interpretations.  Above ≈ 2 MeV the experimental differential-elastic 
distributions were treated individually as reported by the respective authors.  These 
procedures resulted in thirty-five experimentally-based differential elastic-scattering 
distributions extending from incident energies of ≈ 0.6 to 40.0 MeV. They are illustrated 
by the data symbols in Fig. III-B-1-1. They represent most of the world’s knowledge of 
energy-averaged fast-neutron elastic scattering from 208Pb above a few-tens of keV. 

III-B-2. Measured 209Bi elastic scattering Cross Sections 

The NNDC files were also searched for fast-neutron experimental elastic-
scattering cross sections of elemental bismuth (209Bi). There are more than 100 
reasonably acceptable and relevant differential distributions extending from ≈ 0.3 to 24.0 
MeV incident energies, as cited in references AG85, AFD85, Bos+59, Bru+55, BWS56, 
CJ60, Das+90, Day65, Fin+91, Fer+77, GLM64, GSW80, Han+85, Hud+62, HWJ69, 
Kor+77, LGS87, Ols+82, Ols+87, Ray59, Smi+70, SW54, WB54, WB55, Wil+65, 
Tak+88, Tan+72 and Zaf+65. One reference (Smi+70) contains many distributions 
spread in energy between 0.3 and 1.5 MeV. These were averaged over ≈ 100 keV 
incident-energy intervals in order to reduce the number of values and to smooth the 
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resonance fluctuations in this low-energy region.  All of the elastic distributions were 
culled by graphical inspection and a few questionable ones removed.  The rejections were 
generally based upon obvious qualitatively erroneous results and/or on the failure to fit 
the distribution in question with a rational legendre-polynomial expansion.  At higher 
incident energies there are a number of the experimental distributions that do not provide 
sufficient definition for the higher-order polynomial fitting required for quantitative 
determination of angle-integrated elastic-scattering cross sections or for model 
determination. Therefore, these fragmentary higher-energy distributions were abandoned.  
The final result was 90 differential elastic-scattering distributions at incident energies 
between ≈ 0.3 and 24.0 MeV. These experimental results are illustrated in Fig. III-B-2-1 
(two panels). 

III-C. Other 208Pb and 209Bi experimental neutron results relevant to the present 
optical model considerations. 

There is a considerable amount of measured data relevant to the inelastic neutron 
excitation of low-lying levels in 208Pb and 209Bi, the latter primarily due to particle states 
built on the closed shells and the former to guadrupole collective excitations.  This 
inelastic neutron scattering data is summarized in Appendix C. It is further discussed in 
Section V and Appendix C in the context of compound-nucleus and direct-collective 
excitation processes. There is also some experimental information about neutron 
polarization properties as outlined in Appendix D, though it is fragmentary and some of 
the accompanying elastic scattering distributions are questionable.  In addition there are 
S0 and S1 strength functions deduced from low-energy resonance measurements 
(Mug+81, Mug06). This ancillary information will be discussed below in the context of 
the and coupled-channels models, but is not used for model derivation via numerical 
parameter fitting.  

IV. SOM Derivations  

All of the SOMs considered in this section are by definition spherical and consist 
of real Saxon–Woods, imaginary Saxon–Woods-derivative, and Thomas spin-orbit 
components as generically defined in Section II-A, above, unless explicitly otherwise 
specified. There are no volume absorption or imaginary spin–orbit contributions.  All of 
the calculations included compound-nucleus contributions determined using the 
formalism of Moldauer (Mol80) that includes resonance width fluctuation and correlation 
corrections. Consideration is given to the excitation of discrete states up to ≈ 5.03 MeV 
for 208Pb and up to ≈ 3.69 MeV for 209Bi, using the excitation energies, spins and parities 
given in the Nuclear Data Sheets (NDS).  Higher energy excitations are treated using the 
statistical model and parameters of Gilbert and Cameron (GC65), with the temperature 
optimized for best compound-nucleus results above the discrete levels, as discussed in 
Appendix E. The real spin-orbit potential parameters, fixed to those of Walter and Guss 
(WG65), are 

Vso = 5.767 – 0.015•E + 2.0•[(N-Z)/A] 
rso = 1.103 (IV - 1) 
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 aso = 0.56. 

All of the SOM calculations used the most recent version of the code ABAREX (LS99,  
Smi05).  This code is not relativistic, but comparisons with other codes using relativistic 
kinematics indicate the results are reliable up to incident energies of at least 100 MeV.   
(It is a pleasure to acknowledge the provision of test cases by Dr. P. G. Young.)  Due to 
the fact that there are no comprehensive differential 208 Pb elastic-scattering distributions 
above ≈ 40 MeV, and for 209Bi above ≈ 25 MeV, the model determinations are based on 
data extending to only 40 MeV and 25 MeV, respectively.  The resulting models may or 
may not reasonably extrapolate to higher energies.  All the fitting minimized the function 

χ2 = (1/N) Σi {(σ(exp)i - σ(cal)i )/Δσ(exp)i)2}, (IV-2) 

where the sum is over the “N” experimental values, using a non-linear least-square fitting 
procedure (Cra+81). σ(exp)i are the experimental cross sections, σ(cal)i are their 
calculated counterparts, and Δσ(exp)i are the experimental uncertainties.  The 
experimental cross sections were limited to measured and/or averaged measured elastic-
scattering and total cross sections.  The elastic-scattering cross-section uncertainties were 
taken from the reported experimental measurements or, when dealing with averages of 
differential values or as necessary, as estimated by the author.  Total cross sections were 
included in the fitting procedure at the energies of the differential elastic distributions as 
interpolated from the ordered and averaged total-cross-section databases of Section III-A 
or III-B. They were assigned various weights equivalent to those of one to 20 
differential elastic-scattering values.  After a number of preliminary manipulations a 
weight equivalent to that of ten differential elastic values was accepted for each total 
cross section in all the fitting. 

IV-A. SOM-Baseline Models. 

As a starting point, SOM “Baseline” potentials were deduced from the above 208Pb 
and 209Bi elastic-scattering and total cross section data.  The imaginary diffuseness of 
these potentials was assumed to be symmetric about the imaginary radius, i.e. “bW” of 
Eqs. II-A-1 to II-A-4 were identical inside and outside the imaginary radius.  Thus binside≡ 
boutside, the K of  Eq. II-B-1 ≡ 0.0 and ASYM ≡ unity at all energies.  These are then 
conventional, surface-absorption, neutron SOMs.  The derivations of the six parameters 
(av, rv, rw, bw, V, W) of the 208Pb and 209Bi models were independently pursued by 
progressively fitting the neutron differential scattering and total cross sections through 
the six steps, ( i ) six parameter fitting from which av was fixed, ( ii ) five parameter 
fitting fixing rv, ( iii ) four parameter fitting fixing rw, ( iv ) three parameter fitting fixing 
bw, ( v ) two parameter fitting fixing the real strength V, and, finally, ( vi ) one parameter 
fitting giving the imaginary strength W. The entire fitting procedure was iterated three 
times to arrive at the final 208Pb SOM Baseline parameters of Table IV-A-1, and those of
209Bi as given in Table IV-A-2. These parameter sets give good descriptions of the 
measured  208Pb total cross sections as illustrated in Fig. IV-A-1 (upper panel), and of the
209Bi total cross sections as illustrated in Fig. IV-A-1 (lower panel). The SOM Baseline 
description of the measured  208Pb differential elastic scattering cross sections is generally 
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good up to incident energies of ≈ 25 MeV, as illustrated in Fig. III-B-1-1. At higher 
energies and large scattering angles the calculated results are perhaps less suitable but 
this may reflect experimental problems in some cases. The 209Bi Baseline SOM gives a 
very good description of the energy-averaged experimental total cross sections from 
several MeV up to at least 25 MeV, as illustrated in Fig. IV-A-1 (lower panel). The same 
SOM potential also gives a very good description of the experimental neutron differential 
elastic-scattering results from ≈ 0.3 to 25 MeV as illustrated in Fig. III-B-2-1. The real 
potential strengths of the 208Pb and 209Bi, measured in terms of volume-integrals-per
nucleon, are very similar as illustrated in Fig. IV-A-2 (upper panel), with a marginally 
larger energy dependence of the 209Bi values. The imaginary potential strengths differ in 
detail, possibly reflecting structure, resonance and collective differences between the two 
targets (see the lower panel of Fig. IV-A-2). These real and imaginary strengths are 
qualitatively consistent with those of a number of "global" SOM potentials reported in 
the literature.  For example, the real strength (JV) of the global potential reported by 
Rapaport (Rap82) is qualitatively similar to that of the present 208Pb and 209Bi SOMs (see 
Fig. IV-A-1) despite very different real-potential geometries.  The agreement between 
the present and ref. Rap82 imaginary-potential stengths is less satisfying but ref. Rap82 
makes the common assumption that the imaginary potential consists of volume and 
surface branches.  Consideration of that assumption and an alternate concept is a major 
thrust of these remarks, particularly the considerations of Section VI. Though the 
present SOM derivations are based upon far more extensive 208Pb and 209Bi data, there is 
no firm evidence of a fermi-surface anomaly as described, for example, in ref. AFD85 for 
neutrons or in ref. MN81 for protons. This is particularly so for the real potential.  It is 
less certain in the context of the imaginary potential as there is considerable fluctuation in 
the low-energy parameters deduced from fitting, in part due to resonance effects, and 
combinations of surface and volume potentials are often involved.  This is particularly so 
in the case of 208Pb where the resonance distortions are largest and the measurements 
sparse at low energies.  Moreover, data sets from particular institutions frequently display 
systematic discrepancies from the average energy-dependent trends suggesting 
experimental error. The imaginary potentials of the present work extrapolate to zero 
values near the Fermi Energies as theoretically predicted from the Pauli principle.  The 
present SOM potentials result in reasonable strength functions, particularly for 209Bi 
where the lower- energy experimental data is less fluctuating.  The 209Bi SOM potential 
leads to a S0 strength function of 1.07 ± ≈ 0.2 and a S1 of 0.39 ± ≈ 0.2 compared to the 
respective values of 0.65 ± 0.15 and 0.23 ± 0.05 deduced from resonance measurements 
(Mug06, Mug+81). The corresponding values for 208Pb implied by the SOM potential are 
S0 = 0.52 ± ≈ 0.2 and S1 = 0.40 ± ≈ 0.2. The respective values following from discrete 
resonance measurements are uncertain due to the very few low-energy resonances in 
208Pb (Mug06). The discrete resonance situation is somewhat better in 207 Pb where S0 = 
0.76 ± 0.3 and S1 = 0.45 ± 0.07 (Mug06, Mug+81). 

IV-B. Dispersion Effects 

It is well known that dispersion phenomena, reflecting causality, significantly 
impact upon optical model considerations as they relate real and imaginary potentials    
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(JLM77, Lan62, Sat83, Lip66, Pas67, Fes58). These effects can be expressed in the 
form, 

JV(E) = JHF(E) + (P/π) •∫ [JW(E’)/(E-E’)] dE’  (IV-B-1) 

where JV is the strength of the real potential (in volume-integral-per-nucleon), JHW that of 
the corresponding Hartree-Fock potential, and JW the strength of the imaginary potential.  
“P” denotes the principle value of the integral, which is evaluated from − ∞ to + ∞. The 
integral of Eq. IV-B-1 can be broken into surface and volume components given by Eqs. 
IV-B-2 and IV-B-3, respectively 

ΔJsur(E) = (P/π) •∫ [Jsur(E’)/(E-E’)] dE’  (IV-B-2) 
and 

ΔJvol(E) = (P/π) •∫ [Jvol(E’)/(E-E’)] dE’. (IV-B-3) 

With these equations, JV(E) = Jeff(E) + Δ Jsur(E), where Jeff(E) = JHF(E) + ΔJvol(E), and 
Jsur(E) and Jvol(E) are surface- and volume-imaginary strengths, respectively.  In the 
context of the present considerations, and with reasonable assumptions as to volume 
absorption, JHF and ΔJvol are approximately linear functions of energy and are not 
distinguishable in experimental interpretations of the present type.  The effect of Eqs. IV
B-2 and IV-B-3 is to add surface and volume components to the real potential that are 
some fractions of the imaginary surface and volume potentials.  These contributions were 
calculated using the concepts and methods of Smith et al. (SGL86 ) and Lawson and 
Smith (LS01).  Such calculations require extensive energy extrapolations as the above 
integrals extend from - ∞ to + ∞ and the present 208Pb potential of Table IV-A-1 is not 
assured valid beyond ≈ 0 to 40 MeV, and that of the 209Bi potential of Table IV-A-2 
beyond ≈ 0 to 25 MeV. The ΔJsur(E) is a surface strength to be added to the real 
potential. It was assumed to have the same Saxon-Woods-Derivative shape and 
geometric parameters as the surface-imaginary absorption (Section VI deals with the 
asymmetric potential).  It was further assumed that the ΔJvol(E) retains the same Saxon-
Woods geometries as the real potential over all energies.  These are commonly used 
assumptions but they are just that - assumptions. It was further assumed that absorption 
was entirely a surface effect up to 35 MeV, following the present SOM parameters of 
Table IV-A-1 and Table IV-A-2. It was then assumed to fall linearly to a zero value at 
100 MeV. Concurrently, volume absorption was assumed to rise linearly from zero at 35 
MeV to 100 MeV where it was given the strength of the surface absorption at 35 MeV.  
At higher energies the volume absorption was assumed to remain constant on to infinity.  
The imaginary potential was assumed to be zero at the Fermi Energy EF, taken to be – 6.0 
MeV for 208Pb and – 5.87 MeV for 209Bi (Tul05, LS99), and to have a quadratic energy 
dependence from EF to zero laboratory energy. Finally, the entire imaginary potential 
was assumed to be symmetric about EF. These assumptions and the calculational 
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formalism for the evaluation of the dispersive integrals are described in detail by Lawson 
and Smith (LS01).  The resulting 208Pb surface dispersive component, ΔJsur(E), and the 
total dispersive component, ΔJsur(E) + ΔJvol(E), are illustrated as a function of energy in 
Fig. IV-B-1. The resulting fraction of the 208Pb surface-imaginary potential that must be 
introduced into the real potential is shown in Fig. IV-B-2. The corresponding fraction for
209Bi is qualitatively similar to that for 208 Pb. These dispersive fractions fall from near 
unity at zero laboratory energy to several tenths at ≈ 30 to 40 MeV. The details of this 
behavior will vary with model parameters and the asymmetry discussed below.  These 
fractions were introduced into the SOM fitting procedure and the entire model fitting 
processes repeated through three iterative cycles to obtain the 209Pb and 209Bi “dispersive 
optical model” (DOM) parameters given in Table IV-B-1 and Table IV-B-2. These 
parameters give good descriptions of the measured neutron 208Pb and 209Bi total cross 
sections as illustrated in Fig. IV-B-3. They are arguably superior to those obtained with 
the SOM (compare Fig. IV-A-1 and Fig. IV-B-3). The 208Pb and 209Bi results obtained 
with the DOM potential of Table IV-B-1 and Table IV-B-2 are compared with the 
elastic-scattering data bases in Fig. IV-B-4 and Fig. IV-B-5 (two panels). The calculated 
results are in encouraging agreement with the measured values up to ≈ 20 MeV, at least 
as good as those obtained with SOM (compare Figs. IV-B-4 and IV-B-5, and Figs. III
B-1 and III-B-2-1). Above 20 MeV the DOM potential is arguably superior to the SOM, 
particularly at back angles, although the experimental data may, again, be doubtful, and 
far back-angle scattering is reported to be sensitive to the spin-orbit potential which was 
fixed in the present work. Interestingly, one study reported in the literature (AFD85), on 
pragmatic phenomenological grounds introduced a surface peaked component in the real 
potential. Such a property is simply a consequence of reasonable dispersion effects as 
illustrated in Fig. IV-B-2 . 

The strengths (Ji) of the SOM and DOM potentials of 208Pb (Tables IV-A-1 and 
IV-B-1) and of 209Bi (Tables IV-A-2 and IV-B-2) are in reasonable agreement (Fig. IV
B-6) and physically consistent. The low-energy behavior of these strengths is perhaps 
more consistent with the bound-energy behavior of the strengths  (LGS87). The real 
diffusenesses differ by only ≈ 2%. The rV of the DOM is smaller than that of the SOM 
and it is less energy dependent.  This reflects the contribution of the surface fraction of 
Fig. IV-B-2, which adds a surface component to the real potential.  The DOM real 
potential strength (JV) is smaller and less energy dependent than that of the SOM, again 
reflecting the contribution of the dispersive fraction.  The SOM and DOM imaginary 
potentials are remarkably similar in both strength and geometry.  The two potentials lead 
to essentially the same σtotal values and modest differences in dσel/dΩ values; and even 
then only at large scattering angles and higher energies where the experimental values 
become increasingly uncertain.  S0 and S1 strength functions calculated with the two 
potentials are similar but both tend to be somewhat larger than suggest by systematics in 
this mass region (Mug06, Mug+81).  See Appendix B for further DOM discussion. 

IV-C. Iso-spin Effects. 

The real SOM and DOM neutron potential depths are believed to have an iso-spin 
dependence of the form V = V0 - V1•η, where η = (N−Z)/A (Lan62, Hod63, Per63). 
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This implies an analogous expression for the strength in terms of volume-integral-per
nucleon of the form JV = JV0 – JV1•η.  In the present 208Pb and 209Bi cases, η are very 
similar, 0.212 and 0.206 respectively.  The ratio V1/V0 (or JV1/JV0) cannot be determined 
from the present mono-isotopic considerations but is frequently taken to be ≈ 0.275 (e.g., 
Hod63). With this estimate the above equations become 

V = V0(1 ± 0.275•η) and Eq. IV-C-1 
J = J0(1 ± 0.275•η), 

where "−" pertains to incident neutrons and "+" to incident protons. The V0 and J0 
values are the quantities that should be compared in neutron interactions with various 
targets having different iso-spins (i.e. values of η). The present work implies for the 
208Pb SOM a V0 = 48.8416 – 0.1138•E (MeV) and a J0 = 438.346 – 3.0893•E (MeV-fm3), 
and for the 208Pb DOM a V0 = 48.3803 – 0.09688•E and J0 = 417.243 – 3.7147•E (MeV
fm3). The corresponding 209Bi SOM values are V0 = 47.3546 + 0.06206•E (MeV) and 
J0 = 448.087 – 4.2844•E (MeV-fm3) and the DOM values V0 = 48.2281 + 0.002152•E 
(MeV) and J0 = 422.48 – 5.3236•E (MeV-fm3 ). 

V. Collective vibrational processes 

208Pb is a doubly-closed-shell collective octupole vibrator with a  3− first-excited 
state at 2.614 MeV, a 5− second excited level at 3.197 MeV, and approximate ten 
additional negative parity states in the subsequent MeV of excitation energy (NDS).  
Inelastic neutron excitation of the first two of these excited states has been reasonably 
experimentally resolved.  Higher energy excitations remain significant but experimentally 
blur as the measurement resolution increasingly exceeds the level spacing. The low 
energy excited structure of 209Bi is not as clear as the lower excited levels appear to be 
particle states based upon the doubly-closed-shell core.  There are many of these, the 
density of which exceeds the experimental neutron-scattering resolution, but for the 
inelastic excitation of the first two at 0.896 MeV (f7/2) and 1.609 MeV (i13/2) which has 
been reasonably experimentally determined.  The inelastic excitation of these 209Bi states 
is discussed in Appendix C. The present 208Pb neutron data was interpreted in terms of a 
two-level vibrational coupled-channel model, coupling the 0+ (g.s). and 3- (2.614 MeV) 
states together assuming octupole vibrations using a variety of β3 values ranging from 0.0 
to 0.30. The 208Pb elastic scattering database defined above was refitted using the 
coupled-channels code ECIS (Ray96).  The excitation was treated assuming compound-
nuclear processes and the statistical model, as in the spherical interpretations, for higher 
energy excitations. The same iterative fitting procedure as used for the above spherical 
models was employed, progressively determining the six parameters of the real and 
imaginary potentials in the same manner through three cycles.  The coupled-channels 
fitting did not include neutron total cross sections, but at various stages in the process 
comparisons were made with the experimentally determined total cross sections.  There 
were five such sets of fits corresponding to the assumptions that i) β3 = 0 (spherical case), 
ii) = 0.1, iii) = 0.15, iv) = 0.2 and v) = 0.3.  These beta values reasonably extend over 
those reported in the literature (e.g. refs. AFD85 and NNDC).  The resulting five 
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potentials are given in Tables V-1 to V-5. The potentials of Tables IV-A-1 and V-1 are 
reasonably consistent, as they should be, despite the fact that entirely different 
computational codes were used.  All five potentials of Tables V-1 to V-5 gave 
qualitatively reasonable descriptions of the 208Pb total cross sections, as illustrated by the 
panels of Fig. V-1. These comparisons suggest that the β3 is ≈ 0.10 to 0.15. Much larger 
beta values are clearly inappropriate. Values in this range are consistent with those 
reported in the literature from a variety of considerations (AFD85, NDS).  From the 
comparisons of measured and calculated differential elastic scattering shown in Figs. V-2 
to V-6 one reaches the same conclusion,   β3 values are ≈  0.10 to 0.15. However, the 
effects of vibrations are small in the context of neutron total or elastic-scattering cross 
sections of 208Pb, and the simple spherical models (particularly with dispersion) 
qualitatively do essentially as well. 

The vibrational interaction will impact upon the calculation of the inelastic cross 
sections. This is illustrated by Fig. V-7 where the inelastic excitation of the first 3− 
2.670 MeV level in 208Pb is calculated with the potentials of Tables V-1 to V-5. The 
experimental results are far from definitive, but it is evident that one needs a β3 of 0.10 to 
0.15 to qualitatively account for the energy dependence of this first inelastic excitation 
function. Clearly β3  = 0 is inappropriate, as are values of 0.20 or larger.  Statistical 
model temperatures will also have an impact on the calculated results, as outlined in 
Appendix E. 

The above vibrational interpretations were extended to include the coupling of the 
3.912 MeV (5−) level in the modeling with a β3 = 0.125.  This fitting resulted in the 
parameters of  Table V-6. The total cross section and elastic scattering results did not 
appreciably change as indicated by Figs. V-8 and V-9. There is, however. an impact on 
the inelastic excitation of the second excited (3.912 MeV) level, as expected. 

VI. Absorption Potential Asymmetry 

The above SOM and DOM Baseline potentials assumed no asymmetry in the 
imaginary diffuseness bW. Thus the "K" of Eq. II-B-1 was identically zero and the 
imaginary diffusenesses are symmetric about the imaginary radius (RW) at all energies.  
There is no volume absorption.  Asymmetric absorption is now considered where the "K" 
of Eq. II-B-1 can take values greater than zero resulting in the broadening of the surface 
absorption toward the nuclear interior (i.e. linearly shifting from surface toward volume 
absorption with incident energy). The "K" of Eq. II-B-1 was given the values 0.0 (i.e. as 
for the Baseline SOM and DOM), 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.50 
as representative values.  Eq. II-B-1, of course, implies a linear energy dependence of the 
asymmetry.  More complex energy dependencies may be warranted but the linear form is 
a reasonable first approximation.  These assumed "K" values reasonably span the range 
from symmetric bW values to volume absorption with increasing energies as illustrated by 
Fig. II-B-1. For example, a "K" of 0.3 will at 30 MeV result in ASYM = 10 which is 
approaching the conventional Saxon-Woods volume-absorption potential shape as 
illustrated in Fig. II-B-1, curve "10".  At zero energy the ASYM will remain the same 
symmetrical absorption form as the SOM and DOM take at all energies.  What is 
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represented is absorption linearly shifting from surface to volume form with increasing 
energy. The energy dependence of this transition is governed by the size of "K". 

The six-parameter fitting of the 208 Pb database of the SOM (Section IV-A) was 
repeated for the above "K" values. It rapidly became clear that the ASYM (Eq. II-B-1) of 
the absorption had essentially no effect on the real-potential geometries resulting from the 
fitting. The resulting ten rV values averaged to 1.2342 fms and the average of the ten aV 
values was 0.6806 fms. These values differ from those of the 208 Pb SOM by only small 
percentages.  Therefore the 208 Pb real potential radius and diffuseness were fixed to the 
average values resulting from the six-parameter fitting and the fitting repeated using four-
parameter searches defining the imaginary radius (rW) and diffuseness (aW) and the real 
(V) and imaginary (W) potential depths.  The resulting 208 Pb potentials are given in 
Tables VI-1 to VI-10. The corresponding real potential depth (V) and strengths (JV) are 
insensitive to the ASYM values of the absorption potential.  The zero-energy magnitudes 
of the real strengths (Table VI-11) differ by only ≈ 0.1% and their energy dependence by 
only ≈ 1.3%. These real-potential strengths are essentially indistinguishable from 0 to 40 
MeV, as illustrated in Fig. VI-1. 

The primary impact of 208Pb asymmetric absorption in is, as expected, on the 
character of the imaginary potential.  The strengths of the imaginary potentials (JW) of 
Tables VI-1 to VI-10 are summarized in Table VI-12, and illustrated as a function of 
energy in Fig. VI-2. All ten of these potentials suggest that the imaginary strength 
extrapolates to ≈ zero at the Fermi Energy, regardless of the potential asymmetry.  This 
may indicate that energy dependencies of the asymmetries should be referenced to the 
Fermi Energy rather than to the zero energy in the laboratory system, as in the above 
modeling. That alternative energy scale is explored in Appendix A and shown to have a 
minor impact.  It is clear from Fig. VI-2 that after the asymmetry has reached values 
corresponding to or exceeding ASYM = 1.0 + 0.20•E the energy dependence of the 
imaginary strength is approximately linear with energy above 10 MeV without the drop 
off above ≈ 35 MeV resulting from lower ASYM values.  This suggests that the 
conventional approximation of introducing a volume-absorption term in the modeling 
should set in at about 10 MeV, as is frequently encountered in the literature. 

The energy dependencies of the 208 Pb imaginary-potential radii for different 
asymmetries are summarized in Table VI-13 and Fig. VI-3. When the asymmetry 
reaches a value of ASYM = 1.0 + 0.20•E or larger the imaginary radii converge to an 
average value of rW ≈ 1.4147 - 0.003485•E. The remaining and smaller energy 
dependence of the parameter may well reflect the non-locality of the nuclear forces 
(Per63), and dispersion effects.  The larger energy-dependencies for small (or zero) 
asymmetries may be due to an attempt to describe the absorption having a significant 
volume component with a surface absorption that is inappropriate as suggested by the  
LDA model of Liege group (JLM77). The 208 Pb aW determined by the fitting scattered 
from distribution to distribution but general energy and asymmetry trends were evident as 
given in Table VI-14 and illustrated in Fig. VI-4. With increasing asymmetry the aW 
magnitudes decrease along with their energy dependencies.  This again suggests that the 
volume absorption is significant even at relatively low energies. 
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The 208 Pb total cross sections predicted by the ten potentials of Tables VI-1 to 
VI-10 using increasingly asymmetric imaginary potentials are essentially the same, as 
illustrated by the comparisons of Fig. VI-5, panels A though D. All ten of the potentials 
give essentially the same description of the total cross sections irrespective of the shape 
of the absorptive potential term.  In a broader sense, this result suggests that the total 
cross sections will not give significant guidance as to the relation of volume and surface 
absorption in conventional optical model interpretations. 

The differential neutron elastic scattering from 208Pb is not sensitive to the 
asymmetry (ASYM) of the absorption potential up to incident energies of  ≈ 15 MeV as 
illustrated by the examples of Figs. VI-6 to VI-11. All ten of the ASYM potentials give 
essentially identical results at these lower energies.  At higher energies (15 to 40 MeV) 
the results calculated with the larger values of ASYM are arguably in better agreement 
with the experimental values.  The improvement is not striking and may be due to 
variations in experimental results.  These comparisons suggest that the shape of the 
absorption potential is not particularly sensitive to the available 208Pb neutron 
experimental information, and 208Pb is one of the better known experimental cases.  
Phenomenological experimental evidence does not unequivocally support volume 
absorption in the neutron interaction with 208Pb at incident neutron energies of ≤ 40 − 50 
MeV. From theoretical or other grounds, volume absorption of various types may be 
introduced into the modeling but it can not be strongly justified by experimental 208 Pb 
neutron total and elastic-scattering experimental evidence.  Neutrons are the only probe 
that will reach into the lower energy region where questions of volume versus surface 
absorption should be the more acute.  This uncertainty probably contributes to the variety 
of neutron 208Pb potentials found in the literature. 

The above examination of the ASYM dependence of the imaginary potential term 
in neutron scattering from 208 Pb was repeated using the 209 Bi data base described above. 
The procedures were essentially the same except that full 6-parameter fitting was used 
throughout as described above in the SOM Baseline derivations.  The “K” of Eq. II-B-1
1 was varied from 0 (symmetric absorption) to 0.5 in steps of 0.1 (i.e. from 0.0 to 0.1, 
0.2, 0.3, 0.4 and finally to 0.5). This is a coarser mesh than used for 208 Pb but there are 
many more distributions and full 6-parameter fits were used.  The resulting six SOM 
potentials are given in Tables VI-15 to VI-20. Finally, an additional potential was 
considered where the imaginary potential was taken to be entirely volume and of the 
Saxon-Wood form.  The latter potential is given in Table VI-21. The corresponding 209Bi 
SOM depths and strengths are summarized in Tables VI-22 and VI-23 as functions of 
ASYM and the energy dependence of the strengths are illustrated in Fig. VI-12.  As for 
208Pb, there is little if any dependence of the real potential on ASYM. The JV and JW 

energy dependencies are very similar, particularly for the “K” of Eq. II-B-1 ≥ 2. 

The 209Bi neutron total cross sections calculated with the potentials of Tables VI
15 to VI-20, respectively corresponding to ASYM = 1. + K•E with K = 0.0, 0.1, 0.2, 0.3, 
0.4 to 0.5 and with Table VI-21 are compared with the measured values in Fig. VI-13. 
The last section of the figure was obtained using only a Saxon-Woods volume-imaginary 
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potential as defined by the potential of Table VI-21. All of these calculated total cross 
sections are in qualitative agreement with the measured values but clearly the 
representation is best for ASYM = 1 + 0.2•E, ASYM = 1 + 0.3•E or ASYM = 1 + 0.4•E. 
Replacing the imaginary Saxon-Woods Derivative potential with a simple Saxon-Woods 
volume potential leads to some deterioration of the experimental descriptions of the total 
cross sections but not violently so (see the last panel in Fig. VI-13). Similar comparisons 
between differential experimental and calculated 209 Bi elastic scattering cross sections as 
functions of ASYM are shown in Figs. VI-14 to VI-20. Again corresponding to the 
potentials of Tables VI-15 to VI-21.  Not surprisingly, the results are essentially the 
same at lower incident energies (e.g., below 5 – 10 MeV) as the definition of Eq. II-B-1 
is a linear expression in laboratory energy.  The agreement between measurement and 
calculation is good for all cases at these lower energies.  However, as the incident energy 
increases the comparisons are more sensitive to ASYM with better agreement between 
measurement and calculation for ASYM = 1 + 0.2•E to ASYM = 1 + 0.4•E. Even the 
experimental descriptions provided by the simple volume absorption alone remain 
reasonably good, as shown in Fig. VI-20. This is not surprising as Perey (Per63) long 
ago showed that proton elastic-scattering distributions from heavy elements are quite 
insensitive to the choice of surface or volume imaginary-potential forms if the optical 
potential parameters are obtained by multi-parameter fitting of the data.  Illustrative 17 
MeV proton scattering results from ref. Per63 are shown in Fig. VI-21. Moldauer 
(Mol80) and others have pointed out that low-energy S0 and S1 neutron strength functions 
are sensitive to the position and character of the SOM imaginary absorption, suggesting a 
surface absorption outside the real potential radius.  The 209Bi strength functions deduced 
from low-energy resonance measurements are S0 = 0.65 ± 0.15 and S1 = 0.23 ± 0.05 ( × 
10-4) (Mug+81, Mug06). The corresponding values calculated with the SOM potential of 
Table V-15 (Saxon-Woods-Derivative absorption and no asymmetry) are S0 = 0.884 and 
S1 = 0.3523. Those calculated with the entirely volume absorption of Table V-21 (no 
asymmetry) are S0 = 0.493 and S1 = 0.5543. Comparison of either of these calculated 
results with the values deduced from measured values does not clearly support the choice 
of volume or surface absorption in the present 209Bi SOM cases. 

As in the above 208Pb considerations, the derivation of 209Bi asymmetric potentials 
can be improved if the number of parameters used in the fitting are reduced from six to 
four. This was done by fixing the real-potential geometries to rV = 1.2589 – 0.0019*E 
(fms) and aV = 0.69412 (fms), where these values are the simple averages of those 
obtained in the 6-parameter fitting resulting in the ASYM potentials of Tables VI-15 to 
VI-20. The entire 209Bi data base was then refitted searching for the four parameters rW, 
aW, V and W at asymmetry values of ASYM = 1 + 0.0•E, ASYM = 1 + 0.1•E, ASYM = 
1 + 0.2•E, ASYM = 1 + 0.3•E, ASYM = 1 + 0.4•E and ASYM = 1 +0.5•E in the same 
manner used above in the context of the 209Bi 6-parameter fitting.  The resulting model 
parameters, given in Tables VI-24 to VI-29, are quite stable and are consistent with those 
of the above 6-parameter fitting.  This is illustrated in the ASYM dependence of the real 
and imaginary strengths shown in Fig. VI-22, and the values of Tables VI-30 and VI-31. 
The same is true of the resulting imaginary potential geometries tabulated in Tables VI
32 and VI-33, and illustrated in Fig. VI-23. The 209Bi total cross sections calculated with 
the various ASYM functions of Tables VI-24 to VI-29 are compared with the energy 
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averaged experimental database in Fig. VI-24. All of these calculated results agree quite 
well with the experimental database, but those made with ASYM = 1 + 0.3*E are 
superior throughout the energy range, and particularly at the low-MeV energies.  The 
differential 209Bi elastic-scattering distributions calculated with the same potential of 
Table VI-27 are compared with the experimental database in Fig. VI-25. The agreement 
is very good. Perhaps somewhat better than obtained with the above 209Bi 6-parameter 
fitting. 

VII. Energy dependence of the imaginary potential strength 

Theoretical justification of the optical model potential is frequently based on 
infinite nuclear matter considerations (e.g., Gom59, FPW54, BLR55,  etc.) and an 
assumed nucleon-nucleon interaction (e.g., the Yukawa potential, Yak35).  Various 
approximations are used to apply these nuclear matter concepts to the finite nucleus.  
Prominent of these is the "local-density approximation (LDA)" widely exploited by the 
Liege group (JLM77) and others. The interaction of an incident particle with the target 
nucleus is well represented by an optical potential consisting of real and imaginary terms.  
The course of the incident particle is governed by the real potential (e.g, shape 
scattering). In addition, the incident particle may undergo compound-nucleus reactions 
becoming a part of the target nucleus or be re-emitted into the same or another channel. 
These compound-nucleus reactions are represented by the complex (imaginary) portion 
of the optical potential.  As the incident-particle energy decreases it approaches the 
"Fermi Energy".  At that energy all states are filled, and the Pauli Principle forbids the 
absorption of an additional incoming particle.  As the energy of the incident particle 
decreases the number of open absorption channels rapidly falls until at the Fermi Energy 
there are none and thus the imaginary optical potential must be zero.  At low unbound 
energies the compound-nucleus processes rapidly fluctuate with energy resulting in a 
complex of resonance structure.  The average energy-dependent trends of those 
resonances, consistent with the optical model, are difficult to determine from experiment.  
However, it is clear that the imaginary potential strength should fall with energy and 
extrapolate into the bound region to zero at the Fermi Energy.  This physical behavior 
should guide optical model interpretations of experiential measurements at lower 
energies. It is a region where phenomenological optical models fluctuate with various 
effects attributed to the "Fermi Surface Anomaly", and to disperive and iso-spin affects.  
It is pointed out that the present detailed 208Pb and 209Bi neutron scattering interpretations 
at or near the double shell closure at A = 208  using both spherical optical potentials and 
collective coupled-channels  models extrapolate to  imaginary potentials of 
approximately zero magnitude at the Fermi Energy.  This is consistent with the concepts 
outlined above, and it suggests that phenomenological optical potentials should make use 
of the above physical concepts in their derivation.  Many found in the literature do not. 

VIII. A regional potential. 

The present work, previously published work by the author and associates, and  
work by the Los Alamos Group provide the basis for a regional SOM extending from the 
highly deformed region near A ≈ 150 to the spherical region near the doubly-closed-shell 
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nuclei at Z = 82 and A = 126. The real potential strengths of these models are 
summarized in terms of volume-integrals-per-nucleon in Table VIII-1 and VIII-2. 
Simple averages reasonably define the real geometries (rV, aV) and imaginary (rW, aW) 
geometries as given by the values of Tables VIII-1 and VIII-2. The mass and energy 
dependencies of the real and imaginary strengths are a more complex matter as they 
depend on both incident-particle energy and target mass.  This behavior is reasonably 
systematic for the JV of the real potential. Assuming a simple linear Mass (A) and energy 
dependence one gets the approximate regional expression JV = 537.72 − 0.5643•A + 
(0.2387 − 0.01632•A)•E MeV-fm3. This approximate expression describes the model-
deduced JV values of Table VIII-1 to within several percent or better.  A similar linear 
approximation of the mass dependence of JW of Table VIII-2 is less successful as the 
individual SOMs deduced JW values are sensitive to the structure of the individual 
targets, in particularly the effect of low-lying collective states and shell closures (notable 
the double shell closure at A=208). However, using a simple linear expression in mass 
and a quadratic expression in energy one can qualitatively describe the imaginary 
potential strength over the mass range = 150 - 210 and  up to ≈ 35 MeV or more with the 
expression JW = 51.664 − 0.1740•A + (−2.771 + 0.0316•A)•E + (0.3177 
−0.00190•A)•E2  MeV- fm3. Away from A=208 and strong collective targets this 
simple expression leads to SOM Jw values within less than 20% of the values following 
from the individual models. The above are simple approximations but they will lead to 
SOM parameters that are qualitatively applicable to a difficult mass region.  Such a 
regional parameterization seems to give reasonable neutron-reaction results from A = 150 
→ 210 at energies below ≈ 50 MeV. It needs to now be extended to A ≥ 210 and to 
fissile targets.  That will take careful consideration of the fission process in many cases.  
Such work is underway. 
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Appendix A. Absorption asymmetry referenced to the Fermi-Energy (EF) 

The fitting of Section V suggests that the potential absorption extrapolates to zero 
at approximately the Fermi Energy, irrespective of the imaginary potential asymmetry, 
for example as illustrated by Tables VI-1 to VI-10  and in Fig. VI-12. This suggests that 
the energy scale should be referenced to the Fermi Energy (≈ - 6 MeV) rather than the 
conventional laboratory energy, as has been suggested in the literature (e.g. Rap82).  This 
assumption leads to the equation 

ASYM = 1 +K•(E − EF), (A-1) 

where "K" has the same connotation as in Eq. II-B-1. With the assumption of Eq. A-1, 
the four-parameter 208 Pb fitting of Section V of the text was repeated for K = 0.0, 0.1, 
0.2, 0.3, 0.4 and 0.5 with the resulting respective potentials of Tables A-1 to A-6. These 
potentials give essentially the same results as obtained with the prior Section V fitting 
which referenced the energy scale to the laboratory system.  This is illustrated by 
comparing Tables A-7 and A-8 with Tables V-13 and V-14, and by comparisons of Fig. 
A-1 with Figs. VI-2 and VI-4. Thus, the present interpretations do not strongly support 
either choice of energy scale, although the Fermi-Energy reference point may be more 
theoretically attractive.   

Appendix B. Dispersive 209Bi Considerations 

As pointed out in Section IV-B, the derivation of the dispersion fraction 
(illustrated in Figs. IV-B-1 and IV-B-2) is sensitive to the potential on which it is based, 
particularly the energy extrapolations used in the calculations.  Some of these matters are 
mitigated by the dispersive approach used in Section IV-B, but others are unavoidable.  
Therefore, the 6-parameter dispersive 209 Bi fitting was repeated, normalizing  the 
dispersive fraction by 1.0•DISP, 0.5•DISP, 0.25•DISP and 0.01•DISP (i.e. essentially no 
dispersion), where DISP is the dispersive distribution shown in Fig. IV-B-2 and as 
discussed in Section IV-B. The resulting potentials are given in Tables B-1, B-2, B-3 
and B-4. The neutron total cross sections obtained with each of the potentials are 
compared with the energy-averaged values in Fig. B-1  The four potentials give 
qualitatively the same total cross section results, with those employing the  dispersion 
1.0•DISP to 0.5•DISP perhaps being the most desirable.  The same conclusion was 
reached from comparisons of  SOM and DOM calculated and measured differential 
elastic-scattering distributions.  Dispersion effects are an important consideration in 
lower-energy model development but they remain only qualitative.  Considerations of 
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dispersive effects based on other potentials and models may well lead to different results 
but the qualitative features are probably reasonably represented by the present results. 

Appendix C. Neutron Inelastic Scattering Cross Sections 

The experimental knowledge of inelastic neutron scattering from 208Pb as 
available at the NNDC is remarkably meager, limited to 22 references, only 7 of which 
deal with direct experimental determinations of inelastic excitation functions.  The 
remaining deal with γ-production or continuum neutron emission measurements.  These 
references are:- 

(C-1) Kinney W. and  Perey F., Report ORNL-4909 (1974), #10412. 
(C-2) Nellis D. et al., Phy. Rev. C9-1972 (1974) #10485. 

  (C-3) Dickens J. et al., Nucl. Sci. and Eng. 63-101 (1977) #10692. 
  (C-4) Bainum D. et al., Phy. Rev. C16-1377 (1977) #10699.  
 (C-5) Bostrom N. et al., Report WADC-TR-59-31 (1959) #11341. 
  (C-6) Finlay R. et al., Phy. Rev. C30-796 (1984) #12865. 
(C-7) Guss P. et al., Phy. Rev. C25-2854 (1982) #13525. 

  (C-8) Yeh M. et al., Phy, Rev. C54-942 (1996) #13626. 
(C-9) Kadi M. et al., Phy, Rev. Lett.76 1208 (1996) #13942. 

(C-10) Almen-Ramstrom E., Report AE-503 (1974) #20788 
(C-11) Towle J. and Gilboy W., Nucl. Phys. 44-256 (1965) #21128.  
(C-12) Yamamoto T. et al., J. Nucl. Sci. Tech. 15-797 (1978) #21394. 
(C-13) Hlavac S. et al., Nucl. Sci. and Eng. 119-195 (1995) #31450. 
(C-14) Hongyu Zhou et al., Nucl. Sci. and Eng. 134-106 (2000) #31492. 
(C-15) Belovickij G. et al.,YF 15-666 (1972) #40700.  
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(C-20) Joensson B., et al., AE 39-295 (1969) #20164. 
(C-21) Vonach H. et al., Phys. Rev. C50-1952 (1994) #13644. 
(C-22) Nellis D. et al., J. BAP 7-120 (1962) #13001. 

# This symbol again indicates the EXFOR accession number for data in each of the above   
references. 

The above is only fragmentary experimental evidence of inelastic-neutron 
scattering from 208Pb, and it is not of much assistance with SOM development.  This is 
particularly true as the low-lying excited states are collective vibrational excitations as 
clearly evident from a few of the better quality measured inelastic-neutron angular 
distributions, and/or from life-time measurements. 

The experimental knowledge of inelastic neutron scattering from 209Bi is more 
extensive than for 208 Pb, as cited in the 49 references below.  However, only 
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approximately half deal directly with inelastic-neutron scattering, and less than half of 
those are at all relevant to the above model considerations. 
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   # This symbol again indicates EXFOR accession number. 

Some of these resources are of limited value in the context of the present work as 
much of this referenced work is:- 1) the result of gamma-production measurements which 
do not define neutron excitation functions due to uncertainties in gamma-branching ratios 
and internal conversion effects, and 2) the scattered-neutron experiment does not fully 
resolve the contributions from any but the first few excited levels. Thus only the 
excitations of the first three mean excited states of 209 Bi are reasonably defined by 
neutron inelastic scattering experiments (Ex ≈ 0.9, ≈ 1.6 and ≈ 2.5 MeV). The latter 
consists of contributions from as many as seven components,.  The corresponding first 
three low-energy excitations of 208 Pb are at ≈ 2.6, ≈ 3.2 and ≈ 3.5 MeV. The 
experimental results contributing to each of these triplets of effective “levels” were 
carefully culled by graphical inspections with the resulting composite experimental 
excitation functions of the first three levels of 208 Pb shown in Fig. C-1, and for 209Bi 
shown in Fig. C-2. The same figures show calculated inelastic excitation functions 
assuming compound-nucleus processes as outlined in the body of the text. 

Appendix D. Scattered neutron polarizations 

Scattered-neutron polarizations have been used to guide model interpretations. 
Unfortunately, the experimental measurements upon which such considerations are based 
are very difficult and the available data is limited.  Many of the best experimental results 
are from a single institution (TUNL). There are five references to 208Pb neutron 
scattering polarization measurements at the NNDC as follows:- 

(D-1) Delaroche J. et al., Phy. Rev. C/28 1410 (1983), #13635. 

(D-2) Floyd C. et al., Phy. Rev. C/25 1682 (1982), #12859 

(D-3) Roberts M. et al., Phys. Rev. C/44 2006 (1991), #13531. 

(D-4) Morozov V. et al., YFI 14 8 (1972), #40075. 

(D-5) Guss P. et al. Phys. Rev. C/25 2854 (1992), #13525. 


Again"#" denotes EXFOR number. 

There are more NNDC references to measurements of polarizations of neutrons 
scattered from 209Bi, as one would expect from the ready availability of the sample  
material.  However, the experimental results scatter and many are very old and limited.  
These 13 209Bi NNDC references are:- 

(D-6) Begum A., J. Phy. G/7-535 (1981), #30633. 
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(D-7) Hussein A. et al., Phys. Rev. C/15-233 (1977), #10645. 

(D-8) Zijp E. and  Jonker C., Nucl. Phy. A/222-93 (1974), #20777. 

(D-9) Drigo L., et al., Nuovo. Cem. A/13 867 (1973), #20664. 

(D-10) Cox S. and Cox D., Report ANL 7935 (1972), #10332. 

(D-11) Ferguson A. et al., Nucl. Phys. 76 269 (1966), #21140. 

(D-12) Gorlov G. et al., DOK 158 574 (1964), #40221. 

(D-13) Weisel G. et al., Phy. Rev C/54 2410 (1996), #13680. 

(D-14) Annand J. and Galloway R., J. Phys. G/11 1341 (1985), #22029. 

(D-15) Ahmed M. and  Firk F., Sante Fe Conf. 389 (1980), #10855. 

(D-16) Gorlov G. et al., YF 8 1086 (1968), #40307. 

(D-17) Katori K. et.al., JPJ 28 1116 (1970), #209898. 

(D-18) Delaroche J. et al., Phys. Rev. C/28 1410 (1983), #13680. 


Where , again, "#" denotes EXFOR number. 

This database is not sufficiently rigorous to be used for detailed model 
development analogous to that described in the body of this report.  Indeed, attempts to 
do just that reported in the literature have lead to erroneous conclusions which were later 
withdrawn by the authors. Here, comparisons are made between the observed 
polarization of elastically-scattering neutrons and the predictions of the simple SOM 
potentials of Table IV-A-1 and IV-A-2. Fig. D-1 (panels one and two) compares 
measured and calculated elastic-scattered polarization asymmetries for elastic neutron 
scattering from 208Pb at incident energies of 5.97, 6.96, 7.96, 8.95, 9.95, and 13.90 MeV. 
The measured data, as given in the above references D-1, D-2 and D-3, is indicated by 
circular symbols.  The curves indicate the results of calculations with the SOM potential 
on a 6-degree angular mesh. The measured values are all from TUNL work.  The 
agreement between measurement and calculation is qualitatively reasonable, with the 
larger differences at back angles. That agreement might be improved by introducing 
dispersion and/or channel coupling into the calculations, but it is doubtful if the 
experimental data is sufficiently accurate to support such additional model complexity in 
this 208Pb case. 

Similar comparisons of measured and calculated elastically-scattered neutron 
polarizations for 209Bi are shown in the two panels of Fig. D-2. The SOM potential of 
Table IV-A-2 was used in the calculations. The incident neutron energies were 0.93, 2.9, 
3.0, 3.2, 6.0 and 9.0 MeV as given in the above references D-10, D-6, D-14, D-8 and D
18, respectively. There are obvious discrepancies in the experimental data near incident 
energies of 3.0, and possibly elsewhere. Given these experimental uncertainties, the 
comparisons with calculation are about as good as can be expected.  This experimental 
database does not warrant more complex attempts at model interpretation.  

Appendix E. Compound-Nucleus and Channel Competition. 

The above calculations used the statistical level formalism of Gilbert and 
Cameron (GC65), supported by the RIPL compilation of parameters (NDS), to describe 
the distribution of compound-nucleus cross sections at energies above the energies of 
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discrete level excitations. The compound-nucleus contribution to other than elastic and 
inelastic channels is assumed to be very small at the lower energies where compound-
elastic contributions are significant.  The excitation of the first two excited states in 209Bi 
(Ex = 0.896 and = 1.609 MeV) are now reasonably experimentally resolved to incident 
energies of 6 MeV (see Appendix B). They are very largely particle excitations that can 
be treated as compound-nucleus excitations. The associated collective-vibrational 
excitations are relatively small.  The consequences of uncertainties in the low-lying level 
structure were examined using alternate level-density assumptions.  The statistical level 
temperatures in the 208Pb and 209Bi region are anomalous.  Generally, the statistical 
temperature is a smooth function of mass (See Fig. 9 of ref. GC65) but it peaks very 
sharply at the double shell closure at A = 208. The general mass trend is for a temperature 
of ≈ 0.4 MeV in the heavier mass region, peaking very sharply to ≈ 1.0 MeV at A = 208. 
The magnitude of this peak must result in low-energy consistency between compound-
nucleus elastic and inelastic scattering results in the present considerations.   

The impact of the continuum temperature (T) of 209Bi on elastic and inelastic 
neutron scattering was examined using 6-parameter fitting of the entire elastic-scattering 
data base with temperatures of T = 0.4, = 0.7, = 1.0 and 1.4 MeV, including 13 discrete 
levels distributed over excitations of 0.0 to 2.826 MeV with spins and parities as given in 
the Nuclear Data sheets (NDS), and the ASYM of the absorption ≡ 0.0. The resulting 
SOM 209Bi potentials are given in Tables E-1, E-2, E-3 and E-4. All of these potentials 
give reasonable descriptions of the measured neutron total cross sections, as illustrated by 
panels E-1 to E-4 of Fig. E-1, with potentials of Tables E-2 and E-3 probably preferred. 
Comparisons of the corresponding measured and calculated differential elastic-scattering 
cross sections are very similar to each other and to those illustrated in the main body of 
the text.  The calculated cross sections for the inelastic excitation of the first two excited 
states is far more sensitive to the model temperature as illustrated in Fig. E-2. The 
potential of Table E-3 gives reasonable descriptions of the excitation of these first two 
states while the potentials of Tables E-1 and E-2 lead to much poorer results due to 
excessive channel competition, and that of Table E-4 due to too little channel 
competition.  Thus even though there is considerable scatter in the relevant measured 
inelastic-scattering cross sections, they, combined with the differential elastic-scattering 
and total cross sections, clearly indicate that the 209 Bi statistical temperature is ≈ 1.0 
MeV below ≈ 30 MeV incident neutron energy. This value is consistent with that given 
in ref. GC65 and with that used in the primary calculations of the main text.   

The above conclusions were supported by repeating the above 6-parameter fitting 
assuming 48 discrete levels extending to an excitation of 3.692 MeV with and without a 
temperature of T = 1.0 MeV.  Again, the differential elastic-scattering and total cross 
sections were reasonably described by either alternative but the calculated inelastic 
excitations of the first two levels are still modestly sensitive to the alternate potential 
choices at higher energies, as illustrated in the panels of Fig. E-3. Though small, the 
effect of the statistical levels is significant above the upper 3.692 energy limit of the 
discrete levels. 
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The exercises of this appendix based upon the SOM and the measured neutron 
total, elastic-scattering and inelastic-scattering cross sections strongly suggest that a 
statistical temperature of ≈ 1.0 MeV is suitable for describing the neutron interaction of 
209Bi up to energies of at least 30 MeV Such a value is consistent with that of ref. GC65.  
It is an experimental verification of that value.  It is reasonable to assume the same value 
for 208 Pb. However, that can not be verified by interpretations, such as the above, as the 
definition of the relevant 208Pb inelastic neutron scattering is not nearly as good as for 
209Bi. Also, the inelastic processes probably are far more of a collective vibrational 
nature and thus not nearly as well described by the SOM compound-nucleus model. 
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TABLES 


Table IV-A-1. 208Pb Baseline SOM from 6 parameter fitting.  Potential depths and 
energies are in MeV. Potential strengths are in volume-integrals-per-nucleon ( Ji, in 
MeV-fm3). Geometries are in fms. ASYM = 1 +0.00•E (i.e. spherical), temperature T = 
1.0 MeV, 13 discrete levels. 

Real Potential 
Strength V = 46.353 – 0.1239•E 


JV ≈ 417.25 – 3.2910•E (approximation) 

JV = 420.09 − 3.7777•E + 0.01217•E2


Radius rV = 1.2589 – 0.002796•E 
 Diffuseness aV = 0.6821 
Imaginary Potential 

Strength W = 4.7808 + 0.4409•E – 0.02327•E2 + 0.0003408•E3 

JW ≈ 10.864 + 6.0586•E − 0.25661•E2 + 0.003514•E3 (approximation) 
JW = 11.652 + 5.2408•E – 0.15223•E2 − 0.00068503•E3 + 

0.000052478•E4

 Radius rW = 1.4024 - 0.01604•E + 0.0001731•E2 

 Diffuseness bW = 0.1486 + 0.04376•E – 0.0009751•E2 +0.00001007•E3 

Spin-Orbit Potential of ref. WG85, real only and fixed. 
Strength VSO = 5.767 − 0.015•E + 2•((N-Z)/A) 
Radius rSO = 1.103 
Diffuseness aSO = 0.560 

Table IV-A-2. 209Bi Baseline SOM from 6 parameter fitting.  Potential depths and 
energies are in MeV. Potential strengths are in volume-integrals-per-nucleon (Ji, in 
MeV-fm3). Geometries are in fms. ASYM = 1 +0.00•E (i.e. spherical), temperature 
T=1.0 MeV with 13 discrete levels. 

Real Potential 
Strength V = 44.672 + 0.05854•E 


JV ≈ 421.28 − 3.9854•E (approximation) 

JV = 422.91 − 4.3766•E + 0.01304•E2


 Radius rV = 1.2793 – 0.005232•E 
 Diffuseness aV = 0.6814 
Imaginary Potential 

Strength W = 6.1762 − 0.07746•E + 0.005975•E2 − 0.0001105•E3

 JW ≈ 20.35 + 3.1487•E − 0.05241•E2 − 0.0001756•E3 (approximation) 
JW = 20.23 + 3.3936•E − 0.09534•E2 + 0.002148•E3 - 0.00003864•E4 

Radius rW = 1.3580 – 0.008814•E 
 Diffuseness bW = 0.2091 + 0.04145•E – 0.0005810•E2 

Spin Orbit Potential of reference WG85, fixed 
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Table IV-B-1. 208Pb DOM potential deduced from 6 parameter fitting. Potential depths 
and energies are in MeV. Potential strengths are in volume-integrals-per-nucleon (Ji, in 
MeV-fm3). Geometries are in fms. The Fermi Energy was taken to be – 6.0 MeV, ASYM 
= 1 +0.00•E, 13 discrete levels to 4.09 MeV and temperature T = 1.0 MeV. 

Real Potential 
Strength V = 45.611 − 0.09136•E 


JV = 393.36 – 4.1109•E + 0.01522•E2


 JV ≈ 389.81 – 3.5020•E 

 Radius rV = 1.2376 – 0.003670•E 

Diffuseness aV = 0.6827 
Imaginary Potential 

Strength W = 4.7896 + 0.3010•E – 0.007332•E2


 JW = 19.267 + 2.7140•E – 0.004951•E2 – 0.001056•E3


 JW ≈ 17.050 + 3.6692•E – 0.06828•E2 


 Radius rW = 1.3295 – 0.007400•E 
 Diffuseness bW = 0.2707 + 0.01975•E – 0.00001292•E2 

Spin–Obit Potential of reference WG85, fixed. 
Dispersion Fraction DISP = 0.9223 − 0.02770•E + 0.0009277•E2 − 0.00001504•E3 

Table IV-B-2. 209Bi DOM potential deduced from 6 parameter fitting.  Potential depths 
and energies are in MeV.  Potential strengths are in volume-integrals-per-nucleon (Ji,in 
MeV-fm3). Geometries are in fms.  The Fermi Energy is taken to be − 5.87 MeV, ASYM 
≡ 1, 13 discrete levels to 2.83 MeV and a statistical temperature of  T = 1.0 MeV. 

Real Potential 
Strength V = 45.496 + 0.002035•E 


JV = 398.55 − 5.6652•E + 0.02572•E2 


JV ≈ 395.34 − 4.8934•E 

Radius rV = 1.2455 − 0.006256•E 
Diffuseness aV = 0.6757 

Imaginary Potential 
Strength W = 5.5323 − 0.1019•E + 0.02886•E2 − 0.001472•E3 + 0.00002089•E4

 JW = 22.594 + 2.5943•E + 0.008846•E2 − 0.002045•E3

 JW ≈ 21.061 + 3.6165•E − 0.08315•E2

 Radius rW = 1.3210 − 0.006788•E 
 Diffuseness aW = 0.2809 + 0.03354•E − 0.0004784•E2 

Spin-orbit Potential of reference WG85, fixed. 
Dispersive fraction DISP = 1.0163 − 0.03466•E + 0.001339•E2 − 0.0000.2654•E3 
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Table V-1. 208Pb potential parameters deduced with the two-level (0+, 3−) vibrational 
model described in the text. The deformation β3 = 0.0. This should be comparable with 
the SOM baseline potential although the model codes used are different. Potential depths 
are in MeV, potential strengths (Ji ) in volume-integrals-per-nucleon (MeV− fm3), and 
dimensions in fermis. 

Real Potential 
Strength V = 45.767 − 0.1123•E 

JV = 413.35 − 2.8107•E 

Radius rV = 1.2611 − 0.002290•E 


 Diffuseness aV = 0.6755 

Imaginary Potential 

Strength W = 1.3038 + 1.3741•E − 0.1027•E2 + 0.002956•E3 − 0.00002906•E4

 JW = 3.3128 + 8.0398•E − 0.4546•E2 + 0.01110•E3 − 0.00009316•E4

 Radius rW = 1.4360 − 0.02023•E + 0.0002616•E2

 Diffuseness aW = 0.1781 + 0.03444•E − 0.0003356•E2 

Spin-orbit Potential of reference WG85, fixed. 

Table V-2. 208Pb potential parameters deduced with the two-level (0+, 3−) vibrational 
model. The deformation β3 = 0.100. Otherwise nomenclature is identical to that of Table 
V-1, above. 

Real Potential 
Strength V = 46.031 − 0.1338•E 

JV = 416.35 − 3.2597•E + 0.008717•E2


 Radius rV = 1.2592 − 0.002189•E 

 Diffuseness aV = 0.6789 

Imaginary Potential 

Strength W = 0.7412 +1.4519•E − 0.1183•E2 + 0.003711•E3 − 0.00003926•E4

 JW = 0.2881 + 8.6167•E − 0.5633•E2 + 0.01637•E3 − 0.0001658•E4

 Radius rW = 1.4826 − 0.02634•E + 0.0003968•E2

 Diffuseness aW = 0.1042 + 0.04645•E + 0.0006052•E2 

Spin-orbit potential of reference WG85, fixed. 
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Table V-3. 208Pb potential parameters deduced with the two-level (0+, 3−) vibrational 
model. The deformation β3 = 0.150. Otherwise the nomenclature is identical to Table 
V-1. 

Real Potential 
Strength V = 45.307 − 0.08811•E 

JV = 420.00 − 3.4652•E + 0.01008•E2


 Radius rV = 1.2677 − 0.002826•E 

 Diffuseness aV = 0.7024 

Imaginary Potential 

Strength W = 1.5573 + 1.0891•E − 0.08694•E2 + 0.002646•E3 − 0.00002711•E4

 JW = 2.6391 + 7.0312•E − 0.4040•E2 + 0.01071•E3 − 0.00009986•E4

 Radius rW = 1.4345 − 0.01787•E + 0.0002077•E2

 Diffuseness aW = 0.1294 + 0.04245•E − 0.0004659•E2 

Spin-orbit potential of reference WG85, fixed. 

Table V-4. 208Pb potential parameters deduced with the two-level (0+, 3−) vibrational 
model. The deformation β3 = 0.200. Otherwise the nomenclature is identical to that of 
Table V-1. 

Real Potential 
Strength V = 44.910 − 0.06702•E 

JV = 428.07 − 3.8206•E + 0.01179•E2


 Radius rV = 1.2791 − 0.003367•E 

 Diffuseness aV = 0.7133 

Imaginary Potential 

Strength W = 0.4986 + 1.3454•E − 0.1114•E2 + 0.003521•E3 − 0.00003742•E4

 JW = 1.5411 + 6.6953•E − 0.4142•E2 + 0.01237•E3 − 0.0001304•E4

 Radius rW = 1.4212 − 0.01486•E + 0.0001550•E2 

 Diffuseness aW = 0.09660 + 0.04215•E − 0.0004527•E2 

Spin-orbit potential of reference WG85, fixed. 
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Table V-5. 208Pb potential parameters deduced with the two-level (0+,3−) vibrational 
model. The deformation β3 = 0.300. Otherwise the nomenclature is identical to that of 
Table V-1. 

Real Potential 
Strength V = 43.683 − 0.009985•E 

JV = 436.49 − 3.9258•E + 0.01158•E2


 Radius rV = 1.2936 − 0.004042•E 

 Diffuseness aV = 0.7793 

Imaginary Potential 

Strength W = 0.5069 + 0.9693•E − 0.06257•E2 + 0.001536•E3 − 0.00001272•E4

 JW = 1.1982 + 4.0667•E − 0.1216•E2 + 0.0009579•E3 + 0.000008656•E4

 Radius rW = 1.4124 − 0.01492•E + 0.0005857•E2 − 0.00001065•E3 

Diffuseness aW = 0.1774 + 0.02204•E + 0.00002817•E2 

Spin-orbit potential of reference WG85, fixed. 

Table V-6. 208Pb potential parameters deduced from coupling the three levels 0+ (g.s),  
3− (2.614 MeV), and 5− (3.197 MeV) assuming an octupole vibrational system with β3 = 
0.150. Otherwise the nomenclature is identical to that of Table V-1. 

Real Potential 
Strength V = 45.773 − 0.1140•E 

JV = 416.87 − 3.2438•E + 0.008751•E2


 Radius rV = 1.2604 − 0.002356•E 

 Diffuseness aV = 0.6969 

Imaginary Potential 

Strength W = 0.6033 + 1.1720•E − 0.08263•E2 + 0.002304•E3 − 0.00002204•E4

 JW = 1.3436 + 6.7122•E − 0.3373•E2 + 0.007539•E3 − 0.00005707•E4

 Radius rW = 1.4316 − 0.01763•E + 0.0002003•E2

 Diffuseness aW = 0.1899 + 0.03385•E − 0.0003178•E2 

Spin-orbit potential of reference WG85, fixed. 

42




Table VI−1. 208Pb SOM parameters determined from 4 parameter fitting with fixed read 
geometry.  Potential depths and energies are in MeV. Potential strengths are in volume-
integral-per-nucleon ( Ji, MeV−fm3). Geometries are in fermis.  ASYM = 1 + 0.0•E, i.e. 
no asymmetry.  13 discrete levels were considered, the temperature T = 1.0 MeV, and 
there was no dispersion contribution. 

Real Potential 
Strength V = 47.701 – 0.2710•E 

JV = 407.35 – 2.3142•E 

Radius rV = 1.2342 (fixed) 

Diffuseness aV = 0.6806 (fixed) 


Imaginary Potential 
Strength W = 4.0620 + 0.3409•E − 0.003867•E2 

JW = 16.682 + 3.1364•E – 0.031748•E2 – 0.0003722•E3 


 Radius rW = 1.3702 – 0.008577•E 

Diffuseness aW = 0.2673 + 0.01979•E – 0.0002699•E2 


Table VI-2. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV-fm3). Geometries are in fermis.  ASYM = 1 + 0.05•E, 
thirteen discrete levels were considered, the temperature T = 1.0 MeV. 

Real Potential 
Strength V = 47.725 – 0.2747•E 

JV = 407.51 – 2.345•E 

 Radius rV = 1.2342 (fixed) 


Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.2569 + 0.2550•E − 0.003863•E2 

JW = 19.385 + 2.6971•E – 0.019142•E2 – 0.0004508•E3


Radius rW = 1.3699 – 0.006080•E 

Diffuseness aW = 0.2936 + 0.01136•E – 0.0001311•E2


Spin-Obit Potential of reference. WG85, fixed. 
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Table VI-3. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometries.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV−fm3). Geometries are in fermis.  ASYM = 1 + 0.1•E. 
The temperature T = 1.0 MeV, 13 discrete levels are considered, and no dispersion. 

Real Potential 
Strength V = 47.816 − 0.2813•E 

JV = 409.22 – 2.4080•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.8503 + 0.1274•E − 0.001454•E2 

JW = 21.386 + 2.4507•E – 0.02072•E2 – 0.0002503•E3


 Radius rW = 1.3702 – 0.004659•E 

 Diffuseness aW = 0.2815 + 0.009289•E – 0.0001150•E2 


Spin-Obit Potential of reference WG85, fixed. 

Table VI-4. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, Mev – fm3). Geometries are in fermis.  ASYM = 1 + 0.15•E. 
The temperature is T = 1.0, with 13 discrete levels and no dispersion. 

Real Potential 
Strength V = 47.765 − 0.2730•E 

JV = 408.34 − 2.4032•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.9330 + 0.05364•E + 0.0002863•E2 

JW = 21.450 + 2.4280•E – 0.030437•E2 – 0.000044685•E3

 Radius rW = 1.3736 – 0.003694•E 
 Diffuseness aW = 0.2742 + 0.008252•E – 0.0001304•E2 

Spin-Obit Potential of reference WG85, fixed. 
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Table VI-5. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV – fm3). Geometries are in fermis.  ASYM = 1 + 0.20•E, 
Temperature T = 1.0 MeV, with 13 discrete levels and no dispersion. 

Real Potential 
Strength V = 47.667 − 0.2679•E 

JV = 407.61 – 2.349•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 5.4220 − 0.01516•E + 0.001739•E2 

JW = 19.424 + 2.8276•E – 0.050191•E2 + 0.00035039•E3

 Radius rW = 1.3924 – 0.003802•E 
 Diffuseness aW = 0.2191 + 0.01093•E – 0.0001854•E2 

Spin-Obit Potential as per reference. WG85, fixed 

Table VI-6. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, Mev – fm3). Geometries are in fermis, ASYM = 1 + 0.25•E, 
Temperature T=1.0 MeV,  with 13 discrete levels and no dispersion. 

Real Potential 
Strength V = 47.550 − 0.2646•E 

JV = 406.04 – 2.260•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 5.5781 − 0.05154•E + 0.002388•E2 

JW = 18.358 + 3.0673•E – 0.066278•E2 + 0.00063682•E3

 Radius rW = 1.4032 – 0.003729•E 
 Diffuseness aW = 0.1969 + 0.01092•E – 0.0001713•E2 

Spin-Obit Potential as per reference WG85, fixed. 
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Table VI-7. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV – fm3). Geometries are in fermis, ASYM = 1 + 0.30•E, 
temperature T = 1.0 MeV,  with 13 discrete levels and no dispersion. 

Real Potential 
Strength V = 47.641 −  0.2698•E 

JV = 406.70 – 2.302•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 5.1170 – 0.03175•E + 0.002074•E2 

JW = 19.491 + 2.8118•E – 0.060969•E2 + 0.00065811•E3

 Radius rW = 1.4076 – 0.003476•E 
 Diffuseness aW = 0.2244 + 0.005937•E – 0.00007101•E2 

Spin-Obit Potential as per reference WG85, fixed. 

Table VI-8. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, Mev – fm3). Geometries are in fermis, temperature T = 1.0 
MeV, with 13 discrete levels and no dispersion, ASYM = 1 + 0.35•E. 

Real Potential 
Strength V = 47.580 − 0.2649•E 

JV = 406.32 – 2.263•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 


Imaginary Potential 
Strength W = 5.0167  − 0.02987•E + 0.002039•E2 

JW = 17.777 + 2.9985•E – 0.067280•E2 + 0.00073178•E3

 Radius rW = 1.4070 – 0.002884•E 
 Diffuseness aW = 0.2082 + 0.005816•E – 0.00008287•E2 

Spin-Obit Potential as per reference WG85, fixed. 
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Table VI-9. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV – fm3). Geometries are in fermis, temperature T = 1.0 
MeV, 13 discrete levels, no dispersion, ASYM = 1 + 0.40•E. 

Real Potential 
Strength V = 47.378 − 0.2599•E 

JV = 404.56 – 2.219•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.6457 − 0.003209•E + 0.001533•E2 

JW = 16.546 + 3.1278•E – 0.070176•E2 + 0.00073472•E3

 Radius rW = 1.4237 – 0.003677•E 
 Diffuseness aW = 0.2049 + 0.004287•E − 0.00002378•E2 

Spin-Obit Potential as per reference WG85, fixed. 

Table VI-10. 208Pb SOM parameters deduced from 4 parameter fitting with fixed real 
geometry.  Potential depths and energies are in MeV.  Potential strengths are in volume-
integrals-per-nucleon (Ji, MeV – fm3). Geometries are in fermis, temperature T = 1.0 
MeV, 13 discrete levels, ASYM = 1 + 0.5•E, no dispersion. 

Real Potential 
Strength V = 47.505 − 0.2626•E 

JV = 406.34 – 2.275•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 5.0167  − 0.05746•E + 0.002678•E2 

JW = 17.137 + 3.2345•E – 0.087625•E2 + 0.0011113•E3

 Radius rW = 1.4321 – 0.003657•E 
 Diffuseness aW = 0.1888 + 0.003448•E + 0.000003791• E2 

Spin-Obit Potential as per reference WG85, fixed. 
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Table VI-11. 208Pb SOM real potential depths (V) and strengths (JV) as a function of 
asymmetry resulting from 4 parameter fitting with the fixed real geometry of rv = 1.234 
and 
aV = 0.6806 fermis.  Energies E and potential depths are in MeV,  potential strengths in 
MeV-fm3. 

ASYM  Potential Depth  Strength in Volume Integrals-per-Nucleon 

1+0.00•E V = 47.701 − 0.2710•E JV = 407.35 − 2.314•E 

1+0.05•E V = 47.725 − 0.2747•E JV = 407.51 − 2.345•E 

1+0.10•E V = 47.816 – 0.2813•E JV = 409.22 – 2.408•E 

1+0.15•E V = 47.765 – 0.2730•E JV = 408.34 – 2.403•E 

1+0.20•E V = 47.667 – 0.2679•E JV = 407.61 – 2.349•E 

1+0.25•E V = 47.550 – 0.2646•E JV = 406.04 – 2.260•E 

1+0.30•E V = 47.641 – 0.2698•E JV = 406.70 – 2.302•E 

1+0.35•E V = 47.580 – 0.2649•E JV = 406.32 – 2.263•E 

1+0.40•E V = 47.378 – 0.2599•E JV = 404.56 – 2.219•E 

1+0.50•E V = 47.505 – 0.2626•E JV = 406.34 – 2.275•E 


Averages 
V = 47.633(±0.18%) – 0.2690(±2.0%)•E 
JV = 406.998(±0.12%) – 2.3138(±1.3%)•E 
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Table VI - 12. 208Pb SOM potential imaginary depths (W) and strengths (JW) as 
functions of asymmetry resulting from 4 parameter fitting with fixed real-potential 
geometries of rV = 1.234 and aV = 0.6806 fermis.  Energies and potential depths in MeV, 
and strengths in MeV – fm3. 

ASYM Potential Depth/Strength in volume integral-per-nucleon 

1+0.00•E W =  4.0620 + 0.3409•E – 0.003867•E2

 JW = 16.682 + 3.1364•E − 0.031748•E2 – 0.0003722•E3 

1+0.05•E W = 4.2569 + 0.2550•E – 0.003863•E2

 JW = 19.385 + 2.6971•E – 0.019142•E2 – 0.0004508•E3 

1+0.10•E W = 4.8503 + 0.1274•E – 0.001454•E2

 JW = 21.386 + 2.4507•E – 0.020720•E2 – 0.0002503•E3 

1+0.15•E W = 4.9330 + 0.05364•E + 0.0002863•E2

 JW = 21.450 + 2.4280•E – 0.030437•E2 – 0.000044685•E3 

1+0.20•E W = 5.4220 – 0.01516•E + 0.001739•E2

 JW = 19.424 + 2.8276•E – 0.050191•E2 + 0.00035039•E3 

1+0.25•E W = 5.5781 – 0.05154•E + 0.002388•E2

 JW = 18.358 + 3.0673•E – 0.066278•E2 + 0.00063682•E3 

1+0.30•E W = 5.1170 – 0.03175•E + 0.002074•E2

 JW = 19.491 + 2.8118•E – 0.060969•E2 + 0.00065811•E3 

1+0.35•E W = 5.0167 – 0.02987•E + 0.002039•E2

 JW = 17.777 + 2.9985•E – 0.067280•E2 + 0.00073178•E3 

1+0.40•E W = 4.6457 − 0.003209•E + 0.001533•E2

 JW = 16.546 + 3.1278•E – 0.070176•E2 + 0.00073472•E3 

1+0.50•E W = 5.0167 − 0.057460•E +0.002678•E2

 JW = 17.137 + 3.2345•E – 0.087625•E2 + 0.00111130•E3 
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Table VI-13. 208Pb SOM reduced imaginary radii (rW) as a function of asymmetry 
resulting from 4 parameter fitting with the real geometries fixed to rV = 1.2340 and aVV ==
0.6806 fms. Energies are in MeV. 

ASYM rW (fms) 

1 + 0.00•E 1.3702 – 0.008577•E 

1 + 0.05•E 1.3699 – 0.006080•E 

1 + 0.10•E 1.3702 – 0.004659•E 

1 + 0.15•E 1.3736 – 0.003694•E 

1 + 0.20•E 1.3924 – 0.003802•E 

1 + 0.25•E 1.4032 – 0.003729•E 

1 + 0.30•E 1.4076 – 0.003476•E 

1 + 0.35•E 1.4070 – 0.002884•E 

1 + 0.40•E 1.4237 – 0.003677•E 

1 + 0.50•E 1.4321 – 0.003657•E 


Table VI-14. 208Pb SOM imaginary diffuseness (aW) as a function of asymmetry 
resulting from 4 parameter fitting with the real geometries fixed to rW = 1.2340 and aWW ==
0.6806 fms. Energies are in MeV. 

ASYM aW (fms) 

1 + 0.00•E 0.2673 + 0.01979•E – 0.0002699•E2 

1 + 0.05•E 0.2936 + 0.01136•E – 0.0001311•E2 

1 + 0.10•E 0.2815 + 0.009289•E – 0.0001150•E2 

1 + 0.15•E 0.2742 + 0.008252•E – 0.0001304•E2 

1 + 0.20•E 0.2191 + 0.010930•E – 0.0001854•E2 

1 + 0.25•E 0.1969 + 0.010920•E – 0.0001713•E2 

1 + 0.30•E 0.2244 + 0.005937•E – 0.00007101•E2 

1 + 0.35•E 0.2082 + 0.005816•E – 0.00008287•E2 

1 + 0.40•E 0.2049 + 0.004287•E – 0.00002378•E2 

1 + 0.50•E 0.1888 + 0.003448•E + 0.000003791•E2 
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Table VI – 15. 209Bi SOM potential deduced from 6 parameter fitting with ASYM = 1 + 
0.00•E. This is the simple SOM potential. Potential strengths (Ji) are in volume-integrals
per-nucleon (MeV−fm3), and depths and energies in MeV, statistical temperature is T = 
1.0 MeV, with 13 discrete levels and no dispersion. 

Real Potential 
Strength V = 44.524 + 0.05825•E 


JV = 423.57 – 4.4448•E + 0.01340•E2


 JV ≈ 421.89 – 4.0429•E 

 Radius rV = 1.2831 – 0.005314•E 
 Diffuseness aV = 0.6698 
Imaginary Potential 

Strength W = 5.5047 + 0.03334•E – 0.0008421•E2


 JW = 21.11 + 3.3396•E – 0.07990•E2 + 0.0002711•E3


 JW ≈ 21.22 + 3.2040•E – 0.06777•E2 


Radius rW = 1.3372 – 0.007674•E 
 Diffuseness bW = 0.2517 + 0.04020•E – 0.0006174•E2 

Spin Orbit Potential of reference WG85, fixed. 

Table VI–16. 209 Bi SOM deduced from 6 parameter fitting with ASYM = 1 + 0.10•E, 
13 discrete levels, with no dispersion, temperature T = 1.0 MeV. 

Real Potential 
Strength V = 44.691 – 0.01022•E 


JV = 423.37 – 3.9676•E + 0.012488•E2


 JV ≈ 421.81 – 3.5930•E 

Radius rV = 1.2814 – 0.004107•E 
Diffuseness aV = 0.6672 

Imaginary Potential 
            Strength W = 5.6540 - 0.06204•E + 0.0002317•E2 


JW = 23.08 + 3.0959•E – 0.08775•E2 + 0.0005445•E3 


JW ≈ 23.49 + 2.8236•E – 0.06323•E2


Radius rW =1.3277 – 0.001839•E 
Diffuseness bW = 0.2739 + 0.02486•E − 0.0004074•E2 

Spin-orbit potential same as reference WG85, fixed. 

51




Table VI–17. 209 Bi SOM potential deduced from 6 parameter fitting with ASYM = 1 + 
0.2 •E, 13 discrete levels, temperature T= 1.0 MeV, and no dispersion. 

Real Potential 
Strength V = 44.855 − 0.06180•E 


JV = 419.77 – 3.5726•E + 0.021168•E2


 JV ≈ 417.12 – 2.9375•E 

Radius rV = 1.2751 – 0.002862•E 
Diffuseness aV = 0.6797 

Imaginary Potential 
Strength W = 5.5291 + 0.03989•E − 0.002911•E2 


JW = 22.91 + 3.0324•E − 0.05004•E2 – 0.0005378•E3 


JW ≈ 22.50 + 3.3012•E – 0.07423•E2 


Radius rW = 1.3420 + 0.0006631•E 
Diffuseness bW = 0.2723 + 0.007540•E – 0.00005994•E 2 

Spin-Orbit potential same as reference WG85, fixed. 

Table VI–18. 209 Bi SOM potential deduced from 6 parameter fitting with ASYM = 1 + 
0.30•E, 13 levels, temperature T = 1.0 MeV, and no dispersion. 

Real Potential 
Strength V = 45.231 − 0.1334 •E 


JV = 417.76 – 2.6297•E + 0.005302•E2


 JV ≈ 417.10 – 2.4706•E 

Radius rV = 1.2687 – 0.001502•E 
Diffussness aV = 0.6823 

Imaginary Potential 
             Strength W = 5.0806 + 0.08123•E – 0.001924•E2


 JW = 21.68 + 3.2525•E – 0.08806•E2 + 0.0005556•E3


 JW ≈ 22.10 + 2.9747•E – 0.06305•E2


 Radius rW = 1.3488 – 0.001517•E 
Diffusenesse bW = 0.2766 + 0.001582•E – 0.00009255•E2 

Spin-Orbit potential the same as in reference WG85, fixed. 
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Table VI–19. 209 Bi SOM potential deduced from 6 parameter fitting with ASYM = 1 + 
0.4•E, 13 discrete levels, temperature T = 1.0 MeV, and no dispersion. 

Real Potential 
Strength V = 45.239 − 0.1341•E 


JV = 417.18 – 2.5545•E + 0.005116•E2 


JV ≈ 416.54 – 2.4010•E 

Radius rV = 1.2678 – 0.001413•E 
Diffuseness aV = 0.6844 

Imaginary Potential 
              Strength W = 5.4279 − 0.01054•E + 0.0006415•E2


 JW = 22.29 + 3.4418•E – 0.1098•E2 + 0.001451•E3


 JW ≈ 23.38 + 2.7162•E – 0.0444•E2


 Radius rW = 1.3416 + 0.002371•E 
Diffuseness bW = 0.2671 − 0.0003348•E − 0.00006020•E2 

Spin-Orbit potential the same as reference WG85, fixed. 

Table VI–20. 209 Bi SOM potential determined from 6 parameter fitting, ASYM= 1.0 + 
0.5•E, 13 discrete levels, temperature T = 1.0 MeV, and no dispersion. 

Real Potential 
Strength V = 45.080 − 0.1252•E 


JV = 418.21 – 2.5789•E + 0.005406•E2


 JV ≈ 417.53 – 2.4166•E 

Radius rV = 1.2702 – 0.001516•E 
Diffuseness aV = 0.6872 

Imaginary Potential 
            Strength W = 5.9893 − 0.06405•E + 0.002006•E2


 JW = 21.81 + 3.5584•E – 0.16084•E2 + 0.002440•E3


 JW ≈ 23.64 + 2.3383•E – 0.05103•E2


 Radius rW = 1.3555 – 0.002486•E 
Diffuseness bW = 0.2308 – 0.001263•E − 0.00004503•E2 

Spin-Orbit Potential the same as reference WG85, fixed. 
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Table VI–21. 209 Bi SOM Potential determined by  6 parameter fitting using a Saxon-
Woods (non-derivative) volume imaginary potential form, as described in the text.  This 
volume absorption corresponds essentially to an infinite ASYM.  Potential depths and 
energies are in MeV and potential strengths in volume integrals-per-nucleon (Ji). 13 
discrete levels were used, the temperature T = 1.0 MeV, and no dispersion.  

Real Potential 
Strength V = 45.371 + 0.004975•E. 


JV = 422.98 – 4.8817•E + 0.01805•E2 


JV ≈ 420.72 – 4.3401•E 

Radius rV = 1.2778 – 0.005189•E 
Diffuseness aV = 0.6240 

Imaginary Potential 
Strength W = 0.6332 + 0.2330•E – 0.005905•E 2

 JW = 9.073 + 3.4079•E – 0.05186•E 2 − 0.0008044•E 3

 JW ≈ 8.469 + 3.8101•E – 0.08805•E 2 

Radius rW = 1. 4972 + 0.004589•E 
Diffuseness aW = 0.3830 

Spin-Orbit Potential is the same as given in reference WG85, fixed. 

Table VI-22. 209Bi SOM real potential depths (V) and strengths (JV) as a function of 
asymmetry (ASYM) resulting from 6 parameter fitting. 

ASYM Potential               Strengths in volume-integrals-per nucleon 
1+0.0•E V = 44.524 + 0.05825•E JV ≈ 421.89 – 4.0429•E 
1+0.1•E V = 44.691 − 0.01022•E JV ≈ 421.81 – 3.5930•E 
1+0.2•E V = 44.855 − 0.06180•E JV ≈ 417.12 – 2.9375•E 
1+0.3•E V = 45.231 − 0.13340•E JV ≈ 417.10 – 2.4706•E 
1+0.4•E V = 45.239 − 0.13410•E JV ≈ 416.54 – 2.4010•E 
1+0.5•E V = 45.080 − 0.12520•E JV ≈ 417.53 – 2.4166•E 

Volume imaginary only 
---------- V = 45.371 + 0.004975•E JV ≈ 420.72 – 4.3401•E 
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Table VI-23. 209Bi SOM imaginary potential depths (W) and strengths (JW) as functions 
of asymmetry (ASYM) resulting from 6 parameter fitting 

ASYM 	 Potential (in MeV). 
           Strengths in volume-integral-per-nucleon 

1+0.0•E W =  5.5047 + 0.03334•E − 0.0008421•E2 


JW = 21.11 + 3.3396•E − 0.07990•E2 + 0.0002711•E3 


1+0.1•E W = 5.6540 − 0.06204•E + 0.0002317•E2 


JW = 23.08 + 3.0959•E − 0.08775•E2 + 0.0005445•E3 


1+0.2•E W = 5.5291 + 0.03989•E – 0.002911•E2 


JW = 22.91 + 3.0324•E – 0.05004•E2 – 0.0005378•E3 


1+0.3•E W = 5.0806 + 0.08123•E – 0.001924•E2 


JW = 21.68 + 3.2525•E – 0.08806•E2 + 0.0005556•E3 


1+0.4•E W = 5.4279 − 0.001054•E +0.0006415•E2


 JW = 22.29 + 3.4418•E – 0.1098•E2 + 0.001451•E3 


1+0.5•E W = 5.9893 − 0.06405•E + 0.002006•E2 


JW = 21.81 + 3.5584•E – 0.16084•E2 + 0.002440•E3 


Volume imaginary only 
-------------        W = 0.6332 + 0.2330•E – 0.005905•E2 

JW = 9.073 + 3.4079•E – 0.05186•E2 – 0.0008044•E3 

Table VI–24. 209 Bi SOM potential derived with ASYM = 1 +0.0•E using 4 parameter 
fitting with the real-potential geometries fixed to rV = 1.2589 − 0.0019•E and aV = 
0.69412. Energies and potential depths are given in MeV, geometries in fms, and 
potential strengths (Ji) in volume-integrals- per-nucleon (MeV-fm3). In this particular 
case the ASYM implies the spherical surface-absorption optical model. 

Real Potential 
Strength V = 45.704 − 0.1049•E 


JV = 414.5 – 2.7267•E + 0.006376•E2


 JV ≈ 413.7 – 2.5354•E 

 Radius rV = 1.2589 – 0.0019•E, fixed. 

Diffuseness aV = 0.69412, fixed. 
Imaginary Potential 

Strength W = 5.5467 + 0.1689•E – 0.002645•E2) 

JW = 15.51 + 4.2591•E – 0.09118•E2 − 0.0005955•E3


 JW ≈ 15.06 + 4.5568•E – 0.11797•E2 


Radius rW = 1.3547 – 0.007012•E 
 Diffuseness bW = 0.1818 + 0.04117•E – 0.001032•E2 

Spin Orbit Potential of reference WG85. 
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Table VI-25. 209Bi SOM potential derived with ASYM = 1 + 0.1•E using 4 parameter 
fitting with fixed real-potential geometries.  Otherwise, the nomenclature is the same as 
that of Table VI-24. 

Real Potential 
Strength V = 45.768 − 0.1143•E 


JV = 414.60 – 2.8050•E + 0.006658•E2


 JV ≈ 413.77 – 2.6054•E 

 Radius rV = 1.2589 – 0.0019•E, fixed. 
 Diffuseness aV = 0.69412 , fixed. 
Imaginary Potential 

Strength W = 5.2526 + 0.1205•E – 0.003679•E2


 JW = 16.88 + 3.5259•E − 0.03432•E2 − 0.001218•E3


 JW ≈ 15.97 + 4.1347•E – 0.08912•E2 


Radius rW = 1.3462 – 0.002414•E 
 Diffuseness bW = 0.2124 + 0.02330•E – 0.0004727•E2 

Spin Orbit potential of reference WG85. 

Table VI–26. 209Bi SOM potential derived with ASYM = 1 + 0.2•E using 4 parameter 
fitting with the real geometries fixed.  Otherwise the nomenclature is the same as in 
Table VI-24. 

Real Potential 
Strength V = 45.742 − 0.1162•E 


JV = 414.37 – 2.8218•E + 0.006730•E2


 JV ≈ 413.53 – 2.6199•E 

 Radius rV = 1.2589 – 0.0019•E , fixed. 
 Diffuseness aV = 0.69412, fixed. 
Imaginary Potential 

Strength W = 4.6375 + 0.1353•E – 0.003994•E2


 JW = 17.85 + 3.2847•E − 0.02719•E2 − 0.001111•E3


 JW ≈ 17.02 + 3.8402•E – 0.07718•E2 


Radius rW = 1.3481 + 0.00005042•E 
 Diffuseness bW = 0.2525 + 0.01051•E – 0.0001942•E2 

Spin Orbit potential of reference WG85, fixed. 
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Table VI – 27. 209Bi SOM potential derived with ASYM = 1 + 0.3•E and 4 parameter 
fitting with the real-potential geometries fixed.  Otherwise, the nomenclature is the same 
as Table VI-24. 

Real Potential 
Strength V = 45.745 − 0.1182•E 


JV = 414.40 – 2.8394•E + 0.006786•E2


 JV ≈ 413.55 – 2.6358•E 

 Radius rV = 1.2589 – 0.0019•E, fixed. 
 Diffuseness aV = 0.69412, fixed. 
Imaginary Potential 

Strength W = 4.8421 + 0.06658•E – 0.002369•E2 + 0.00002724•E3 

JW = 19.35 + 3.2714•E – 0.06582•E2 + 0.000008946•E3

 JW ≈ 19.36 + 3.2669•E – 0.06541•E2 

Radius rW = 1.3518 + 0.001821•E 
 Diffuseness bW = 0.2586 + 0.003716•E − 0.00009609•E2 

Spin Orbit potential of reference WG85, fixed. 

Table VI–28. 209Bi SOM potential derived with ASYM = 1 +0.4•E using 4 parameter 
fitting with fixed real-potential geometries.  Otherwise, the nomenclature is identical to 
that of Table VI-24. 

Real Potential 
Strength V = 45.767 − 0.1203•E 


JV = 414.60 – 2.8596•E + 0.006874•E2


 JV ≈ 413.74 – 2.6534•E 

 Radius rV = 1.2589 – 0.0019•E, fixed. 
 Diffuseness aV = 0.69412, fixed. 
Imaginary Potential 

Strength W = 4.7177 + 0.07413•E – 0.002723•E2 + 0.00001617•E3 

JW = 17.89 + 3.6011•E – 0.08361•E2 + 0.0002844•E3

 JW ≈ 18.10 + 3.4589•E – 0.07081•E2 

Radius rW = 1.3523 + 0.002899•E 
 Diffuseness bW = 0.2447 + 0.001163•E − 0.00004476•E2 

Spin Orbit potential of reference WG85, fixed. 
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Table VI–29. 209Bi SOM potential derived with ASYM = 1 + 0.5•E using 4 parameter 
fitting with fixed real geometries.  Otherwise the nomenclature is identical to that of 
Table VI-24. 

Real Potential 
Strength V = 45.764 − 0.1222•E 


JV = 414.57 – 2.8767•E + 0.006936•E2


 JV ≈ 413.71 – 2.6686•E 

 Radius rV = 1.2589 – 0.0019•E, fixed. 
 Diffuseness aV = 0.69412, fixed. 
Imaginary Potential 

Strength W = 4.4112 + 0.09521•E – 0.002028•E2


 JW = 16.73 + 3.8467•E – 0.09475•E2 + 0.0006245•E3


 JW ≈ 17.20 + 3.5344•E – 0.06664•E2 


Radius rW = 1.3630 + 0.003406•E 
 Diffuseness bW = 0.2398 − 0.001284•E – 0.00006157•E2

 Spin-Orbit potential of reference WG85, fixed. 

Table VI–30. 209Bi SOM real potential depths (V) and strengths (JV) as a function of 
asymmetry (ASYM) resulting from 4 parameter fitting. 

ASYM Potential               Strengths in volume-integrals-per nucleon 
1+0.0•E V = 45.704 – 0.1049•E JV = 414.50 – 2.7267•E + 0.006376•E2 

1+0.1•E V = 45.768 – 0.1143•E JV = 414.60 – 2.8050•E + 0.006658•E2 

1+0.2•E V = 45.742 – 0.1162•E JV = 414.37 – 2.8218•E + 0.006730•E2 

1+0.3•E V = 45.745 – 0.1182•E JV = 414.40 − 2.8394•E + 0.006786•E2 

1+0.4•E V = 45.767 – 0.1203•E JV = 414.60 – 2.8596•E + 0.006874•E2 

1+0.5•E V = 45.764 – 0.1222•E JV = 414.57 – 2.8767•E + 0.006936•E2 
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Table VI-31. 209Bi SOM imaginary potential depths (W) and strengths (JW) as functions 
of asymmetry (ASYM) resulting from 4 parameter fitting. 

ASYM 	 Potential (in MeV). 
           Strengths in volume-integral-per-nucleon 

1+0.0•E W = 5.5467 + 0.1689•E – 0.002645•E2 


JW = 15.51 + 4.2591•E – 0.091180•E2 – 0.0005955•E3 


1+0.1•E W = 5.2526 + 0.1205•E – 0.003679•E2 


JW = 16.88 + 3.5259•E − 0.034320•E2 – 0.0012180•E3 


1+0.2•E W = 4.6375 + 0.1353•E – 0.003994•E2 


JW = 17.85 + 3.2847•E – 0.027190•E2 – 0.001111•E3 


1+0.3•E W = 4.8421 + 0.06658•E – 0.002369•E2 + 00002724•E3 


JW = 19.35 + 3.27140•E – 0.065820•E2 – 0.000008946•E3 


1+0.4•E W = 4.7177 + 0.07413•E – 0.002723•E2 + 0.000016170•E3 


JW = 17.89 + 3.60110•E – 0.083610•E2 – 0.0002844•E3 


1+0.5•E W = 4.4112 + 0.09521•E – 0.002028•E2 


JW = 16.73 + 3.84670•E – 0.094750•E2 + 0.0006245•E3 


Table VI–32. 209Bi SOM imaginary potential radii (rW) as functions of asymmetry 
(ASYM) resulting from 4 parameter fitting. 

ASYM 	 Imaginary radii in fms. 

1 + 0.0•E rW =1.3547 – 0.007012•E 
1 + 0.1•E rW = 1.3462 – 0.002414•E 
1 + 0.2•E rW = 1.3481 + 0.000050•E 
1 + 0.3•E rW = 1.3518 + 0.001821•E 
1 + 0.4•E rW = 1.3523 + 0.002899•E 
1 + 0.5•E rW = 1.3630 + 0.003406•E 
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Table VI–33. 209Bi SOM imaginary potential diffuseness (bW) as a functions of 
asymmetry (ASMY) resulting from 4 parameter fitting. 

ASYM Imaginary diffuseness in fms 

1 + 0.0•E bW = 0.1818 + 0.04117•E – 0.001032•E2 

1 + 0.1•E bW = 0.2124 + 0.02330•E – 0.0004727•E2 

1 + 0.2•E bW = 0.2525 + 0.01051•E – 0.0001942•E2 

1 + 0.3•E bW = 0.2586 + 0.003716•E – 0.00009609•E2 

1 + 0.4•E bW = 0.2447 + 0.001163•E – 0.00004476•E2 

1 + 0.5•E bW = 0.2398 – 0.001284•E – 0.00006157•E2 

Table VIII-1. Regional real potential strengths in volume integrals per nucleon, JV. 
SYM = elemental symbol, Z = charge, A = mass, asymmetry (η=(N − Z)/A), deformation 
β (usually β2), JV(MeV-fm3) as a function of energy, and the reference are given. 
Average real-potential reduced radius (rV) and diffuseness (aV) are given in fms. 

SYM Z A η β  JV  Reference Reports 

Eu 63 151.9 0.171 0.160 = 463.83 − 3.2009•E, LA-10915-pr31 (1987) 

Gd 64 157.3 0.186 0.308 = 434.49 − 0.7961•E, NDM-157 (2004) 

Gd 64 157.3 0.186 0.308 = 434.45 − 1.9482•E, LA-10915-pr31 (1987) 

Ho 67 164.9 0.187 0.300 = 444.38 − 3.5580•E NDM-151 (2000) 

Ho 67 164.9 0.187 0.300 = 450.00 − 3.1254•E LA-10915-pr31 (1987) 

Hf 72 178.5 0.193 0.287 = 457.03 − 2.5823•E NDM-153 (2001) 

Ta 73 180.9 0.193 0.269 = 441.05 − 2.4610•E NDM-160 (2005) 

Re 75 186.2 0.194 0.220 = 430.78 − 2.9740•E NDM-155 (2003) 

Re 75 186.2 0.194 0.220 = 432.77 − 2.7804•E NS+E-97-239 (1987) 

Au 79 197.0 0.198 -0.131 = 416.56 − 1.5995•E NDM-161 (2005) 

Pb 82 208.0 0.212 0.125 = 417.25 − 3.2910•E This Work 

Bi 83 209.0 0.206 0.000 = 421.28 − 3.9854•E This Work 


rV ≈ 1.2462 ± 0.67% aV ≈ 0.6435 ± 1.32% 

60




          

              
             
             
             
             
              
              
              
              
              
              
                   

             

 Table VIII-2.  Regional imaginary potential strengths in volume integrals per nucleon,  
JW. The nomenclature is the same as for Table VIII-1. 

SYM Z A η β  JW  References as per Table VIII-1 

Eu 63 151.9 0.171 0.160 = 24.22 + 3.2482•E − 0.02194•E2 

Gd 64 157.3 0.186 0.308 = 25.90 + 2.4564•E + 0.000006587•E2 

Gd 64 157.3 0.186 0.308 = 19.77 + 2.6426•E − 0.01409•E2

 Ho 67 164.9 0.187 0.300 = 22.39 + 2.1506•E − 0.000002984•E2

 Ho 67 164.9 0.187 0.300 = 28.72 + 2.0467•E − 0.01767•E2

 Hf 72 178.5 0.193 0.287 = 19.49 + 2.4196•E − 0.000007651•E2

 Ta 73 181.0 0.193 0.269 = 21.60 + 0.7208•E + 0.1578•E2

 Re 75 186.2 0.194 0.220 = 18.78 + 2.0778•E + 0.004880•E2

 Re 75 186.2 0.194 0.220 = 20.43 + 4.1612•E − 0.05574•E2

 Au 79 197.0 0.198 -.131 = 14.97 + 3.3220•E − 0.0000006554•E2

 Pb 82 208.0 0.212 0.125 = 10.86 + 6.0586•E − 0.2566•E2 + 0.003514•E3

 Bi 83 209.0 0.206 0.0 = 20.35 + 3.1487•E −  0.05241•E2-0.0001756•E3 

rW ≈ 1.2637 ± 0.66% aW ≈ 0.5000 ± 4.0% 

Table A-1. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji). Geometries are in fermis.  The ASYM = 1 + 0.00•(E − EF). No 
dispersion. 

Real Potential 
Strength V = 47.732 – 0.2708•E 

JV = 407.48 – 2.3114•E 
 Radius rV = 1.2342 (fixed) 
 Diffuseness aV = 0.6806 (fixed) 
Imaginary Potential 

Strength W = 4.5113 + 0.2885•E − 0.002665•E2 

JW = 18.508 + 2.9669•E – 0.02831•E2 – 0.0003692•E3 

 Radius rW = 1.3659 – 0.008313•E 
 Diffuseness aW = 0.2661 + 0.02057•E – 0.0002970•E2 

Spin-Orbit potential as per reference WG85, fixed. 
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Table A-2. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji). Geometries are in fermis.  ASYM = 1 + 0.1•(E – EF). No dispersion. 

Real Potential 
Strength V = 47.665 − 0.2706•E 

JV = 406.93 – 2.3105•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.5276 + 0.08912•E − 0.0001545•E2 

JW = 21.42 + 2.3022•E – 0.02009•E2 – 0.0001399•E3


 Radius rW = 1.3967 – 0.005143•E 

 Diffuseness aW = 0.2331 + 0.01160•E – 0.0001584•E2


Spin-Orbit potential as per reference WG85, fixed. 

Table A-3. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji), geometries are in fermis,  ASYM = 1 + 0.20•(E – EF), no dispersion. 

Real Potential 
Strength V = 47.627 − 0.2695•E 

JV = 406.59 – 2.3008•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.9959 − 0.01563•E + 0.001865•E2 

JW = 19.97 + 2.6890•E – 0.04626•E2 +0.0003687•E3


 Radius rW = 1.4281 – 0.004743•E 

 Diffuseness aW = 0.1519 + 0.01233•E – 0.0001602•E2


Spin-Orbit potential is as per reference WG85, fixed. 
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Table A-4. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji), geometries are in fermis,  ASYM = 1 + 0.30•(E – EF), no dispersion. 

Real Potential 
Strength V = 47.554 − 0.2654•E 

JV = 405.90 – 2.2639•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 3.8983 + 0.07716•E − 0.0001181•E2 

JW = 19.89 + 2.4227•E – 0.02992•E2 + 0.00009150•E3


 Radius rW = 1.4443 – 0.004361•E 

 Diffuseness aW = 0.1701 + 0.004651•E + 0.000001181•E2


Spin-Orbit potential is as per reference WG85, fixed. 

Table A-5. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji), geometries are in fermis,  ASYM = 1 + 0.40•(E – EF), no dispersion. 

Real Potential 
Strength V = 47.550 − 0.2653•E 

JV = 405.93 – 2.2650•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.7718 − 0.03156•E + 0.002201•E2 

JW = 19.684 + 2.7015•E – 0.05694•E2 + 0.0006434•E3


 Radius rW = 1.4564 – 0.004352•E 

 Diffuseness aW = 0.1138 + 0.007424•E − 0.00005195•E2


Spin-Orbit potential is as per reference WG85, fixed. 
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Table A-6. 208Pb SOM parameters from 4 parameter fitting with fixed real geometries.  
Potential depths and energies are in MeV.  Potential strengths are in volume-integrals
per-nucleon (Ji), geometries are in fermis, ASYM = 1 + 0.5•(E – EF), no dispersion. 

Real Potential 
Strength V = 47.588 − 0.2671•E 

JV = 406.27 – 2.2805•E 

 Radius rV = 1.2342 (fixed) 

 Diffuseness aV = 0.6806 (fixed) 

Imaginary Potential 

Strength W = 4.1784 + 0.02357•E + 0.001053•E2 

JW = 18.701 + 2.6916•E – 0.04933•E2 + 0.0004586•E3


 Radius rW = 1.4656 – 0.004171•E 

 Diffuseness aW = 0.1107 + 0.004713•E + 0.0000000101• E2


Spin-Orbit potential is as per reference WG85, fixed. 

Table A-7. 208Pb SOM real-potential strengths as a function of the asymmetry of the 
absorption potential following from 4 parameter fitting referencing the energy 
dependence of the absorption asymmetry to the Fermi energy (EF), as described in the 
text. 

ASYM Strengths (JV) in volume-integrals-per.nucleon, MeV−fm3

 1.0 + 0.0 • (E – EF) JV = 407.48 – 2.3114 • E 
1.0 + 0.1 • (E – EF) JV = 406.93 – 2.3105 • E 
1.0 + 0.2 • (E – EF) JV = 406.59 – 2.3008 • E 
1.0 + 0.3 • (E – EF) JV = 405.90 – 2.2639 • E 
1.0 + 0.4 • (E – EF) JV = 405.93 – 2.2650 • E 
1.0 + 0.5 • (E – EF) JV = 406.27 – 2.2805 • E 
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Table A-8. 208Pb SOM imaginary-potential strengths as a function of the asymmetry of 
the absorption potential referenced to the Fermi Energy (EF), as described in the text. 

ASYM  Strength (JW) in volume-integrals-per nucleon, MeV−fm3 

1.0+ 0.0 • (E – EF) JW = 18.508 + 2.9669 • E – 0.02831 • E2 – 0.0003692 • E3 

1.0+ 0.1 • (E – EF) JW = 21.417 + 2.3022 • E – 0.02009 • E2 – 0.0001399 • E3 

1.0 + 0.2 • (E – EF) JW = 19.980 + 2.6890 • E – 0.04626 • E2 + 0.0003687 • E3 

1.0 + 0.3 • (E – EF) JW = 19.890 + 2.4227 • E – 0.02992 • E2 + 0.0000915 • E3 

1.0 + 0.4 • (E – EF) JW = 19.684 + 2.7015 • E – 0.05694 • E2 + 0.0006434 • E3 

1.0 + 0.5 • (E – EF) JW = 18.701 + 2.6916 • E – 0.04933 • E2 + 0.0004586 • E3 

Table B-1, 209Bi DOM 6 parameter fit, no ASYM,  Full dispersion (DISP) contribution 
calculated with the SOM.  Effective dispersion  = 1.0•DISP where DISP is shown in Fig. 
IV-B-5. 

Real Potential 
Strength V = 47.623 − 0.1072•E 


JV = 370.58 – 3.9776•E + 0.01944•E2


 JV ≈ 368.15 – 3.3948•E 

 Radius rV = 1.1845 – 0.002307•E 
 Diffuseness aV = 0.7684 −  0.01134•E 
Imaginary Potential 

Strength W = 6.0633 − 0.1194•E + 0.007067•E2 – 0.0001374•E3 


JW = 24.33 + 1.7412•E + 0.021215•E2 – 0.0007645•E3


 JW ≈ 23.75 + 2.1234•E – 0.01318•E2 


Radius rW = 1.3090 – 0.005857•E 
 Diffuseness bW = 0.2735 + 0.03115•E + 0.000004075•E2 

Spin Orbit potential from reference WG85, fixed. 
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Table B-2, 209Bi DOM 6 parameter fit, no ASYM,  Full dispersion contribution (DISP) 
calculated with the SOM.  Effective dispersion = 0.5•DISP (DISP of Fig IV-B-5). 

Real Potential 
Strength V = 45.965 − 0.04206•E 


JV = 399.24 – 4.3506•E + 0.01592•E2


 JV ≈ 397.25 – 3.8732•E 

 Radius rV = 1.2364 – 0.003914•E 
 Diffuseness aV = 0.7280 −  0.004471•E 
Imaginary Potential 

Strength W = 4.4708 + 0.2930•E − 0.007469•E2 


JW = 17.76 + 3.1020•E + 0.037238•E2 – 0.0021599•E3


 JW ≈ 16.14 + 4.1820•E – 0.05995•E2 


Radius rW = 1.3445 – 0.009456•E 
 Diffuseness bW = 0.2599 + 0.02903•E + 0.0001080•E2 

Spin- Orbit potential from reference WG85, fixed. 

Table B-3. 209Bi DOM 6 parameter fit, no ASYM, Dispersion contribution (DISP) 
calculated with the SOM.  Effective dispersion = 0.25•DISP. 

Real Potential 
Strength V = 45.428 − 0.007032•E 


JV = 410.86 – 4.5734•E + 0.01622•E2


 JV ≈ 408.83 – 4.0869•E 

 Radius rV = 1.2577 – 0.004649•E 
 Diffuseness aV = 0.6934 − 0.002130•E 
Imaginary Potential 

Strength W = 4.9959 + 0.03516•E − 0.0005835•E2

 JW = 18.27 + 3.2916•E − 0.061325•E2 +  0.00022259•E3

 JW ≈ 18.29 + 3.2805•E – 0.06032•E2 

Radius rW = 1.3442 – 0.007824•E 
 Diffuseness bW = 0.2365 + 0.04388•E − 0.0006068•E2 

Spin Orbit potential from reference WG85, fixed. 

66




Table B-4. 209Bi DOM 6 parameter fit, no ASYM, Dispersion contribution (DISP) 
calculated with the SOM.  Normalization of DISP fraction is 0.01, i.e. essentially no 
DOM. 

Real Potential 
Strength V = 45.757 − 0.007393•E 


JV = 414.98 – 4.3091•E + 0.024387E2


 JV ≈ 411.93 – 3.5775•E 

 Radius rV = 1.2568 – 0.004193•E 
 Diffuseness aV = 0.7086 - 0.002207•E 
Imaginary Potential 

Strength W = 5.0572 + 0.09386•E − 0.001898•E2


 JW = 15.58 + 3.5765•E − 0.0533975•E2 – 0.00035775•E3


 JW ≈ 15.58 + 3.7554•E – 0.069491•E2 


Radius rW = 1.3608 – 0.008787•E 
 Diffuseness bW = 0.2002 + 0.04203•E − 0.0005448•E2 

Spin Orbit potential from reference WG85, fixed. 

Table E-1. 209Bi SOM potential deduced from 6 parameter fitting.  ASYM = 1 + 0.00•E, 
temperature T = 0.4 MeV, 13 discrete levels and no dispersion.  Potential strengths (Ji) 
are in volume-integrals-per nucleon (MeV-fm3), depths and energies in MeV, and 
dimensions in fermis.  

Real Potential 
Strength V = 45.920 − 0.009160•E 

JV = 412.18 − 3.5299•E 

Radius rV = 1.2553 – 0.004081•E 


 Diffuseness aV = 0.7007 

Imaginary Potential 

Strength W = 5.0965 + 0.03045•E + 0.005764•E2 − 0.0001657•E3 

JW = 19.82 + 2.3136•E + 0.2703•E2 − 0.001796•E3


Radius rW = 1.3456 – 0.006699•E 

 Diffuseness bW = 0.2520 + 0.03286•E – 0.0004521•E2


Spin orbit potential is from reference WG85, fixed. 
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Table E-2. 209 Bi SOM deduced from 6 parameter fitting.  ASYM = 1 + 0.00•E, 13 
discrete levels, temperature T = 0.7 MeV, no dispersion.  

Real Potential 
Strength V = 44.898 + 0.06643•E 

JV = 413.78 −3.4581•E 

Radius rV = 1.2681 – 0.004741•E 

Diffuseness aV = 0.6924 


Imaginary Potential 
            Strength W = 7.0858 – 0.3765•E + 0.02643•E2 − 0.0004313•E3 

JW = 20.70 + 1.9659•E + 0.04780•E2 − 0.001727•E3 

Radius rW =1.3499 – 0.007926•E 
Diffuseness aW = 0.1831 + 0.04484•E − 0.0007413•E2 

Spin-orbit potential of reference WG(85), fixed 

Table E-3. 209Bi SOM deduced from 6 parameter fitting.  ASYM = 1 + 0.00•E, 13 
levels, temperature T = 1.0 and no dispersion. 

Real Potential 
Strength V = 44.848 + 0.03268•E 

J V = 420.12 − 3.8198•E 

Radius rV = 1.2763 – 0.004791•E 

Diffuseness aV = 0.6811 


Imaginary Potential 
            Strength W = 5.6084 + 0.03081•E + 0.0007269•E2

 JW = 20.11 + 3.3235•E − 0.06635•E2 + 0.0001311•E3

 Radius rW = 1.3526 – 0.008420•E 
Diffuseness aW = 0.2306 + 0.04007•E – 0.0006794•E2 

Spin-orbit potential is that of reference WG85, fixed. 
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Table E-4. 209 Bi SOM deduced from 6 parameter fitting.  ASYM = 1 + 0.00•E, 13 
levels, temperature T = 1.4 MeV and no dispersion. 

Real Potential 
Strength V = 44.655 + 0.04805•E 

JV = 423.00 − 3.9745•E 

Radius rV = 1.2823 – 0.005108•E 

Diffuseness aV = 0.6713 


Imaginary Potential 
             Strength W = 6.2828 + 0.01382•E – 0.001371•E2

 J W = 18.20 + 4.1308•E − 0.1143•E2 + 0.0005755•E3

 Radius rW = 1.3456 – 0.008542•E 
Diffuseness aW = 0.1889 + 0.04402•E – 0.0006398•E2 

Spin-orbit potential is from reference WG85, fixed. 
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Fig. II-B-1. Relative surface-absorption potential forms as a function of radius obtained 
with the diffiseness bwi interior to the imaginary radius increasing from 1 -t 10 times 
that of the diffiseness bwoexterior to the imaginary radius. This corresponds to ASYM = 
1,2,4,6, 8, and 1 0 of Eq. 11-B-l , as numerically noted in the figure. 



Fig. IU-A-1-1.Energy averages of measured 20$b neutron total cross-sections from = 
10 keV to 600 MeV. "+" symbols indicate the wenpod experimental values as 
discussed in the'text. 71 



Fig. III-A-1-2. Energy-averaged measured total cross sections of 208~b  compared with 
the corresponding ENDF/B-VI (ENDF) evaluated cross sections. "+" symbols indicate 
the present experimental averages and the curves the evaluation. 
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Fig. III-A-2-1. Energy-averaged 2 0 9 ~ iexperimental neutron total cross sections 
(symbols) constructed from the measured values as outlined in the text. The four panels 
show the same data over different energy ranges. 



Fig. III-A-2-2. The present energy-averaged 20%i total cross sections (crosses) 
compared with the ENDF/B-VI values (curves). 
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Fig. JII-A-2-3. Percentage deviations between energy-averaged 'O$i and '08pb neutron 
total cross sections as a function of energy (lagged curve). The heavy solid line indicates 
zero. 



Fig. III-B-1-1. Measured differential neutron elastic-scattering cross sections of 20%b 
are indicated by circular symbols. Below 2 MeV the values are energy averages as 
described in the text. Curves denote the results of SOM fitting as described in Section 
IV of the text. Incident energies are numerically noted in MeV. Herein all differential 
data are presented in the laboratory coordinate system. 







Fig. IV-A-1. Comparison of energy-averaged experimental neutron total cross sections 
(solid curves) and values calculated with the SOMBaseline potentials of the text at the 
energies of the experimental elastic-scattering distributions (symbols). The upper panel 
pertains the 208~b and the lower to 2 0 9 ~ i .  



En(MeV) 

Fig. W-A-2. Comparisons of the ener distributions of the real (Jv) and imaginary (Jw) 
SOMBaseline potential strengths of 2# Bi and 2 0 8 ~ b  as given in Tables W-A-1 and IV-
A-2.Strengths (Ji) are given as volume-integrals-per nucleon. Each panel has two 
curves with symbols, corresponding to 20%i ("Xusymbols) and 2 0 8 ~ b  ("0"symbols) 
values. 



Fig. IV-B-1. 2 0 8 ~ btotal (TOT) and surface (SUR) dispersion contributions to the real 
potential (in units of ~ e v - f h ~ )  as a function of incident neutron energy in MeV. 



Fig. IV-B-2.The fraction of the surface-imaginary '08pb potential that is added to the 
real potential as a function of laboratory energy in the DOM. 



Pig. N-B-3. Comparison of measured and calculated 208~band 20%i neutron total cross 
sections. The calculations were made with the DOM potentials of Tables IV-B-1and 
IV-B-2.The nomenclature is the same as that of Fig. IV-A-1. 



Fig. IV-B-4. Comparison of measured (symbols) and calculated (curves) neutron 
elastic-scattering cross section of 208~b. The calculations employed the DOM potential of 
Table IV-El. The nomenclature is the same as that of Fig. HI-Rl. 







En(MeV) 

Fig. IV-B-6. Comparisons of "??b (crosses) and " ' ~ i  (circles) DOM real (Jv) and 
imaginary (Jw)potential strengths in terms of volume-integrals-per-nucleon. These 
curves with symbols represent the values of Tables IV-B-1 and IV-B-2. 



Fig. V-1. 2 0 8 ~ bneutron total cross sections. The energy-averaged experimental values 
are indicated by the curves. Results calculate at the energies of the elastic-scattering data 
are indicated by circular symbols. The calculations used the two level (0+,3-) vibrational 
model of the text. The pj varied from 0 to 0.1,O.15. 0.2 and 0.3 as noted on the various 
panels of the figure. 
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Fig. V-2.Comparisons of measured (symbols) and calculated (curves) 2 0 8 ~ belastic 
scattering cross sections. Incident energies are numerically noted. The calculations used 
.thetwo-level vibrational model of the text with p3= 0.00 (i.e spherical model). 
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Fig. V-5. Same as Fig. V-2 but with p3=0.20. 
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Pig. V-7.Comparison of measured and calculated inelastic neutron-scattering cross 
section for the excitation of the 2.61 MeV 3- levels in 208~b.Curves indicate the results 
of calculations using the indicated PI values as described in the text. Symbols indicate 
the results of measurements as referenced in the text. 



Fig. V-8. Comparisons of measured (curve) and calculated (symbols) neutron total cross 
sections of 208~b.The calculations used the three-level vibrational model of Table V-6 
as described in the text. 





Fig. VI-1. Real-potential strengths as a h c t i o n  of energy for the ten ASYM values of 
Tables V-1 to V-10. These strengths are indicated by ten curves. They are essentially 
indistinguishable from one another. 



Fig. VI-2.Imaginary potential strengths, Jw, of Tables VI-1 to VI-10 as a function of 
energy. These ten curves systematically change from ASYM = 1.0+O.OO*E(0symbols), 
to ASYM = 1.0+ 0.50.E (+symbols). The Jw values steadily decrease with asymmetry 
to -35 MeV. 



Fig. VI-3. Energy dependencies of the imaginary radii resulting from the fitting of the 
lo8pbdata base with the asymmetries of Table VI-1 to VI-10. The synhbols have the 
sameconnotation as in Fig. VI-2. 



Fig. VI-4. Energy dependencies of the aw values of the asymmetric potentials of Tables 
VI-1 to VI-10. The symbols have the same connotations as in Fig. V-2. 
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Fig. VI-5. Comparisons of averaged 209 Pb total cross sections (curves) with values 
calculated with various ASYM values (symbols) as noted on panels A through D of the 
figure. 



-
ASYM = 1 +O. 15.E-

o - . 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 4 1 1 t t 1 1 1 1 1 t g 1 1 1 1 1 1 1 1 1 1 . 1 


5' 

Ld 

5 

ASYM = 1 + 0.25.E-

o - l t l l l . J l t l l l l l l l l l l l l l l l l l t l l t l l l l l l l l I l l1 
0 20 40 



- - 

l l l l l l l l l l l l l l l l I I ~ I I I I I I 1 i I I 1 l l l l l l l l l ~ 

-
1 2 0 8 ~ b-C 
- -.& 

-
I 

- ASYM = 1 + 0.30.E 
-

--
I I I I I I I I I I I -

l l l l l l ~ ~ l ~ l l ~ ~ J 1 ~ l ~ l l l l l l l l l 


ASYM = 1 + 0.35.E --

l I b I . I I I I I I I I I ~ I I I I I ~ l ~ ~ l l l l ~ l l t l l l l l l l l . 

ASYM = 1 + 0.40.E 
-

-
b ~ l l ~ l l l l l l l l l l l l l ~ l ~ l l l ~ l l l l ~ l l l l l l l l l l 




ASYM = 1 + 0.50.E 
- -

l l l l l l l i l l l l l ~ l l l l l l l l , l l l , l l l l l l l 1 1 1 1  



Fig. VI-6. Comparisons of measured and calculated 2 0 8 ~ b  elastic-scattering cross 
sections.. The measured values are indicated by symbols and the calculations by curves. 
The potential is that of Table VI-1 where ASYM =O.OO*E, i.e. compamble to the simple 
SOMmodel. Incident energies are numerically noted. 
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Fig. VI-11. ~a&& Fig. VI-6, but using the potential of Table VI-10 where ASYM = 

1.0+ 0.50.E. 



Fig. VI-12. Energy dependencies of the real (Jv) and imaginary (Jw) potential strengths 
resulting from 6-parameter fitting of the 2 0 9 ~ i  data base. The curves indicate increasing 
ASYM values from ASYM = 1 + 0.OO.E ("0"symbols) to ASYM = 1 + 0.50.E ( " X  
symbols). 
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Fig. VI-13. Comparisons of measured (curves) and calculated (symbols) 20$i neutron 
total cross sections using ASYM = 1 + 0.O.E to ASYM = 1 + 0.5.E and the 
corresponding potentials of Tables VI-15 to VI-20.The final panel of the figure makes 
the same comparisons using a Saxon-Woods volume absorption as per Table VI-21. 
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PANEL-1 


Fig. VI-14. Comparisons of measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of 20%i. The calculations used the potential of Table V-
15 where ASYM = 1 + O.OOeE, i.e. a spherical calculation. The incident neutron 
laboratory energies are numerically cited for each distribution. The two panels of the 
figure represent results fiom 0.35 to 24.0MeV. 
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PANEL-1 

Fi.VI-15. Comparisonsof measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of M$i. The calculations used the potential of Table V-
16 where ASYM = 1 + 0.10.E. Otherwise the nomenclature is the same as that of Fig. 
V-14. 





Fig. VI-16. Comparisons of measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of 20$i. The calculations used the potential of Table 
VI-17 where ASYM = 1 + 0.20.E. Otherwise the nomenclature is the same as that of 
Fig. 14. 
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Fig. VI-17. Comparisons of measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of "Bi. The calculations used the potential of Table VI-
18 where ASYM = 1 + 0.30.E. Otherwise the nomenclature is the same as that of Fig. 
VI-14. 









Fig. VI-19. Comparisons of measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of ' 0 9 ~ i .  The calculations used the potential of Table VI-
20 where ASYM = 1 + 0.50.E. Otherwise the nomenclature is the same as that of Fig. 
VI-14. 





Fig. VI-20. Comparisons of measured (symbols) and calculated (curves) differential 
elastic scattering cross sections of 20$i. The calculations used the potential of Table 
VI-21where the imaginary potential is entirely a volume contribution. Otherwise the 
notation is identical to that of Fig. VI-14. 





Fig. VI-21. Comparisons of measured and calculated 17 MeV proton scattering from 
some heavy targets. The left figure exclusively uses a Saxon-Woods derivative form of 
the imaginary potential while the right figure uses a simple Saxon-Woods volume 
absorption alone. These results are taken from the work of Perey (Per63). 



Fig. VI-22. The real (Jv) and imaginary (Jw) potential strengths as a function of energy 
as derived by 4-parameter fitting and numerically given in table^ VI-24 to VI-29.There 
are six curves in each panel of the figure corresponding to different asymmetries where 
the "0"symbols denote the ASYM= I+  0.O.E results, the "+" symbols the ASYM = 1 + 
0.3.E results, and the ' X  symbols the ASYM = 1 + 0.5.E results. Intermediate curves 
interpolate between. \ 
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Fig. VI-23. "$i imaginary potential radius, rw (fms) and diffusseness aw (fms) as 
function of energy as determined from 4-parameter fitting. Curves correspond to varying 
asymmetries with the same symbolic notation as in Fig. VI-22. 
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Fig. VI-24, Calculated (symbols)and experimental (curves)total cross sections of 209 Bi. 
Each panel corresponds to a different value of ASYM, as noted. The potentials were 
determined from four parameter fitting.. 
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Fig. VI-25. Calculated (curves) and measured (symbols) differential elastic-scattering 
cross sections of 209~ i .The calculations used the potential of Table VI-27where ASYM 
= 1 + 0.3.E. The potential was determinedby 4 parameter fiinng. 
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Fig. A - 1. Real (Jv) and Imaginary (Jw) potential strengths resulting from fitting with the 
energy referenced to the Permi Energy. Each panel has six curves obtained with K =0.0. 
0.1,0.2,0.3,0.4, or 0.5 in Eq, A-1. The real potential curves are indistinguishable. 
For the imaginary potential only the K =0.0 results differ significantly from the others. 
The figure is plotted in the laboratory energy scale. 
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Fig.B-1. Comparison of calculated (symbols) and measured (curves) 209 Bi neutron total 
cross sections. The calculations employed various dispersive fractions as noted on each 
panel of the Figure and as defined in Tables B-1 to B-4.These Tables also defined the 
respective potential parameters. 
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Fig. C-1. Measured and calculated excitation functions for the first three levels in 2 0 8 ~ b  
at 2.61, 3.20 and 3.48 MeV. Selected experimental values are indicated by symbols and 
the results of calculations by curves, as described in the Appendix C. 



Fig. C-2. Measured and calculated excitation function for the first three excited levels in 
' 09  Bi at 890 and 1600 keV. Selected experimental values are indicated by symbols and 
results calculated as discussed in the text by curves. The experimental values are limited 
to results of direct inelastic-neutron detection. 
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Fig. D-1. Comparisons of measured (symbols) and calculated (curves) polarization 
("POL") of neutrons elastically scattered from 2 0 8 ~ bat 5.97 to 13.90MeV as marked on 
each panel of the figure. The calculations (curves) were generated on a 6-degree angular 
mesh using the SOM potential of Table IV-A-1. The data is referenced in the text. 
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Fig. D-2.Comparisons of measured (symbols) and calculated (curves) polarization 
("POL")of neutrons elastically scattered from '098i at 0.93 to 9.0 MeV as marked on 
each panel of the figure and as referenced in the text. The calculations were generated on 
a 6-degree angular mesh using the SOM potential of Table IV-A-2. 
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Fig. E-1. Comparison of measured (curves) and calculated (symbols) total cross 
sections of 209Bi. The calculations used the potentials of Tables 6 1  to E-4,as noted on 
each panel. 126 



Fig. E-2.Comparisons of measured (symbols) and calculated (curves) cross sections for 
the excitation of the 0.896MeV and 1.609MeV states in 20%i. The experimental values 
are referenced in Appendix A and the curves correspond to the potentials of Table E-1 to 
E-4,as marked. 



Fig. E-3.Comparisons of measured and calculated cross sections for the excitation of the 
0.896 MeV and 1.609MeV states in 2 0 9 ~ i .The notation is the same as in Fig. E2, 
except that the curves represent the results calculated with the potentials of Tables E-5 
and E-6,as described in the text. 
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Fig. E-4.Comparisons of measured and calculated cross sections for the excitation of the 
0.896 MeV and 1.609MeV states in '%i. The notation is the same as Fig. E-2,except 
the curves represent the calculations made, with the potentials of Tables E-7 and E-8, as 
outlined in the text. 
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