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Abstract 
 

A unified Monte Carlo (UMC) approach to fast neutron cross section data 
evaluation that incorporates both model-calculated and experimental information 
is described. The method is based on applications of Bayes Theorem and the 
Principle of Maximum Entropy as well as on fundamental definitions from 
probability theory. This report describes the formalism, discusses various 
practical considerations, and examines a few numerical examples in some detail. 

 
 
Preface: This document has been prepared in response to a request from the Nuclear 
Energy Agency (NEA) Working Party on International Evaluation Cooperation (WPEC) 
to provide support for the activities of Subgroup 24 that are aimed toward development of 
new methodologies for the evaluation of fast-neutron reaction cross section data. 
 
 

1.  Introduction 
 
 The quest for mathematically rigorous nuclear data evaluation methods is 
motivated by a desire to eliminate – or at least minimize – subjectivity, and it has been 
enabled by the growing power and sophistication of modern computational resources. 
The least-squares method – especially the generalized least-squares (GLS) formalism 
with its capacity to allow inclusion of prior information based on nuclear modeling as 
well as correlated uncertainties – gained a following in the 1970’s (e.g., see refs. [1] and 
[2]). Some limitations of this approach surfaced in the early 1980’s, but it continues to be 
widely used to this day with various practical, but nevertheless ad hoc, “fixes” applied to 
circumvent these problems (e.g., see ref. [3] which deals specifically with the “Peelle’s 
Pertinent Puzzle” problem, better known as “PPP”). Today, in one form or another, GLS 
is clearly the most widely employed mathematically objective tool for performing nuclear 
data evaluations. This report does not attempt to review the various specific 
methodologies and computer software packages that have been developed and put into 
use by nuclear data evaluators during the past three decades. Rather, it focuses on 
describing a single Unified Monte Carlo (UMC) simulation approach that is currently 
under development. Section 2 describes the basic formalism of this method. Section 3 
discusses various practical matters that need to be considered when applying this 
formalism. Section 4 explores several numerical examples in considerable detail in order 
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to gain a better understanding of the basic workings of the UMC method. Finally, Section 
5 presents some conclusions derived from this investigation. 
 
  

2.  Formalism 
 
 The present UMC method, like various others, finds its origins in Bayes Theorem. 
This theorem is non-controversial and it can be derived easily from the basic postulates of 
probability theory following some simple steps involving the algebra of probabilities [1]. 
Bayes Theorem offers a rigorous procedure for learning from experience by defining a 
simple formula that relates prior and posterior information. For present purposes, we 
express Bayes theorem in terms of probability density functions rather than actual 
probabilities. In the following discussion, items expressed in bold font represent vectors 
and matrices while those in ordinary font are scalars. The symbol “•” will be used for 
convenience to represent vector (or matrix) multiplication. The symbol “x” signifies 
scalar multiplication; it is used only in situations where it is needed for clarity. 
 
 Let yE represent a collection of measured (experimental) quantities with a 
corresponding covariance matrix VE that expresses their uncertainties as well as 
correlations. Let us suppose that there are “n” elements in the vector yE and “n2” elements 
in the “n x n” matrix VE. VE must be a symmetric matrix, so the actual number of distinct 
elements in this matrix is n(n+1)/2. It must also be a positive definite matrix. A 
“foolproof” method for constructing VE is described in Section 3. Furthermore, let σC 
represent a collection of quantities calculated from a nuclear model with a corresponding 
covariance matrix VC that expresses their uncertainties as well as correlations. A method 
for generating this covariance matrix has been reported and discussed earlier by this 
author, e.g. refs. [4] and [5]. We assume that there are “m” calculated quantities and that 
the corresponding covariance matrix has dimensions “m x m”. It must also be symmetric 
and positive definite. For convenience, we use the symbol “σ” for all the quantities being 
evaluated even though this collection might include not just cross sections but other 
observables as well (e.g., angular distributions). The emphasis here is on evaluations 
derived through combining results from both experiments and nuclear modeling, since 
this is almost universally the situation encountered by evaluators. In fact, it is the 
evaluators who generally perform the nuclear modeling exercises. We will not dwell on 
the issue of how nuclear model parameters and their uncertainties and correlations are 
chosen to provide the most reasonable values for σC and VC. It suffices to say that these 
results from calculations serve as the “priors” in the ensuing discussion. In other words, 
we assume that the evaluator begins the evaluation process by generating prior results by 
means of nuclear modeling and then “refines” the evaluation by incorporating 
experimental data in the evaluation procedure. If no relevant experimental data exist, then 
the evaluation will be based on nuclear modeling alone and the evaluator’s job is 
finished. This approach is non-controversial. How could it be otherwise? 
 
 In the present context, Bayes theorem is embodied in the following formula: 
 

p(σ) = C x L(yE,VE | σ) x p0(σ | σC,VC).                                        (1) 
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In this equation, “p” is the a posteriori (posterior solution) probability density function, 
p0 is the a priori (prior) probability density function, “L ”is a likelihood function (also a 
probability density function), and “C” is a normalization constant. This constant is chosen 
so that the following normalization condition is satisfied: 
 

∫S p(σ) dσ = 1 ,                                                           (2) 
 
where dσ is a volume element (voxel) in the m-dimensional space of possible values for σ 
and S is the region of that space over which one must integrate in order to achieve 
convergence. By convergence it is meant that increasing the size of S would not change 
the value of the integral in Eq. (2) significantly. We shall see that in practice it is not 
necessary to know the value of “C” since it cancels in the formulas that are actually used 
in the Monte Carlo analysis. 
 
 It is important to realize that while the components of σ are random variable 
arguments of the indicated functions, yE, VE, σC, and VC are simply collections of fixed 
numbers. Since σ is a vector, it has the following m components: σ1, σ2, … , σi, … , σm. 
The solution to our evaluation problem is completely embodied in the probability density 
function p(σ). In probability theory, the “best estimate” value for a random variable, e.g., 
in this case for σi, is defined as its expectation value (better known as “mean value”) with 
respect to the associated probability density function. Therefore, 
 

< σi > = ∫S σi p(σ) dσ    (i = 1,m)                                           (3)                 
 
is the evaluated value we seek for this variable. 
 
 The same reasoning can be applied to generate a formula for determining 
elements of the evaluation solution covariance matrix Vσ : 
 

Cov(σi,σj) = (Vσ)ij = < σi σj > - < σi > x < σj >      (i,j = 1,m) ,                    (4) 
 
where <…> represents multivariate integration of the indicated quantities in the same 
manner as shown for σi in Eq. (3). Note that when i = j we obtain the variances from Eq. 
(4) while the off-diagonal elements (often referred to as “covariances”) are obtained 
when i ≠ j. 
 
 Eqs. (1) through (4) provide us with all that is needed – at least conceptually – to 
perform an evaluation of the components of σ and to determine their covariance matrix 
Vσ. Obviously, we cannot proceed further without addressing several important issues. 
Here they are: 
 
(i)  Why is the dimension shown here for σ the same as that for σC , namely, “m”? 
 

The answer is that with a nuclear model one is free to calculate values for the 
physical parameters of interest at all energies, angles, etc., that one is interested in 
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representing in the final evaluation. This is certainly not the case for experimental data 
where myriad factors influence what can be obtained experimentally and what is not 
obtainable. Therefore, the present methodology (as well as other commonly used ones) 
generate “prior” results for all the specific energies, angles, etc., that are to be included in 
the final evaluation. This leads to a one-to-one correspondence between the elements of σ 
and σC. 
 
(ii)  Are there any conditions concerning the relationship of the prior (model-calculated) 
and experimental information upon which the UMC evaluation is based? 
 

Yes, the Bayesian formalism, as embodied in Eq. (1), requires them to be 
independent, so it is important to make sure that this is the case, at least to a large extent. 
This point is addressed in some detail in Section 3. 
 
(iii)  What form should the functions “p0” and “L ” assume? 
 

Obviously, it is crucial to know exactly what these functions should be since 
without this knowledge numerical analysis is impossible. Bayes formula, i.e., Eq. (1), 
offers no specific guidance in this matter. Fortunately, a rigorous solution to this problem 
comes to us courtesy of the pioneering work on information entropy by Shannon (in the 
1940’s), Jaynes (in the 1960’s), and other statisticians of this period. We will not dwell 
on the details – they are mentioned in Ref. [1] and other references alluded to therein – 
but rather will proceed directly to the result. The Principle of Maximum (Information) 
Entropy tells us that if all we know about a collection of random variables can be 
summarized by giving their mean values and associated covariance matrix, then the best 
estimate for the form of the appropriate probability density function is a multivariate 
normal function (Gaussian). Thus, in our case we have:  
 

p0(σ | σC,VC) ~ exp{-(½)[(σ – σC)T • VC
-1 • (σ – σC)]} ,                         (5) 

 
and by the same reasoning, 
 

L(yE,VE | σ) ~ exp{-(½)[(y – yE)T • VE
-1 • (y – yE)]} .                           (6) 

 
In these formulas VC

-1 and VE
-1 are inverse matrices, “T” denotes the transpose of the 

indicated vector, and the symbol “~” indicates that the respective normalization constants 
are not shown explicitly. They are actually not needed as is indicated below. It is now 
clear why we require VC and VE to be square, symmetric, positive definite matrices; they 
have to be inverted. The reason why “y” and “yE” appear in Eq. (6) rather than “σ”-type 
variables is that the relationship between the experimental data yE and the variables σ to 
be evaluated may be indirect. For example, the experimental data may represent ratios of 
the variables to be evaluated or they may be integral quantities. In fact, it is appropriate to 
define y by the expression y = f(σ), where f represents a vector collection of m scalar 
functions f1, f2, … , fi , … , fm  each of whose variables are one or more of the elements of 
σ. This point is discussed further in Section 3. 
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 While the conditions that lead to a multivariate normal probability density 
function for both the prior and likelihood distributions are relatively common ones, it 
should be noted in passing that other functions may be more appropriate in applications 
where alternative information is available [1]. For example, if there are estimates of the 
mean values but no uncertainty information, then an exponential function should be used. 
Another example might be that both central values and covariance matrices are available 
but the uncertainties are very large. Under these conditions, lognormal distributions 
should be used rather than normal distributions [6]. Lastly, if the experimental 
information is based entirely on raw detectors counts, then a Poisson distribution could be 
used for the likelihood function.  
 
 Combining Eqs. (1), (5), and (6) leads to the expression 
 

p(σ) ~ exp{-(½)[{(y – yE)T • VE
-1 • (y – yE)} + {(σ – σC)T • VC

-1 • (σ – σC)}]} ,     (7) 
 
where once again we overlook the normalization constant. It is interesting to note that if 
we were to apply the assumption that our best solution for the evaluation corresponds to 
values of  the components of σ that maximize p(σ), then we ought to require that 
 

[(y – yE)T • VE
-1 • (y – yE)] + [(σ – σC)T • VC

-1 • (σ – σC)] = minimum .         (8) 
 

This line of reasoning is strictly valid only if p(σ) is a multivariate normal 
distribution with respect to the variables σ. Acceptance of this assumption leads directly 
to the well-known generalized least-squares formalism (GLS), (e.g., refs. [1] and [2]). 
However, we will avoid being unduly distracted by this observation in the present 
development. 
 

Eq. (7) – in combination with Eqs. (2), (3), and (4) - offers a way to carry out the 
numerical analysis for the proposed UMC evaluation scheme. We note that all the 
information that we need pertaining to the experimental and model calculated values, as 
well as their uncertainties and correlations, is embodied in Eq. (7). If we accept Bayes 
Theorem and the Principle of Maximum entropy, this development of the UMC 
formalism is quite rigorous up to this point. But, now we are faced with the following 
challenging problem: 
 
(iv)  Is it necessary to actually calculate the multivariate integrals indicated by the 
formulas above? 
 

In principle, the answer to this question is “yes”; in practice the answer is “no”, at 
least not by the conventional “brute force” approaches used for numerical integration. 
The reason is that such calculations have been shown to be amenable to analysis by 
Monte Carlo simulation, at least to precisions which, in principle, are limited only by the 
number of traced histories. 
 

Let us image pursuing K Monte Carlo histories. For each history we generate a 
potential solution vector σk (k = 1,K). Each component of this vector is selected at 
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random from its associated uniform distribution independently from all the others. A 
typical sampling range would be defined by: 
 

σi-min ≤ σik ≤ σi-max                     (i = 1,m ; k = 1,K)    (9) 
 
Expressed another way, σik is generated using the following formula: 
 

σik = σi-min + (σi-max – σi-min) x (RN)ik                                      (10) 
 
where (RN)ik represents a real random number uniformly selected from the interval (0,1). 
The indicated intervals define a unique “rectangular” region S in m-dimensional space 
with volume V(S) given by the formula 
 

V(S) = Πi=1,m (σi-max – σi-min) .                                            (11) 
 
As mentioned above, the heart of the evaluation process is embodied in Eqs. (2), (3), (4), 
and (7). Therefore, we proceed now to develop specific forms for these equations that are 
amenable to Monte Carlo analysis. The equivalent of Eq. (3) is 
 

< σi >K = [Σk=1,K σik p(σk)] / [Σk=1,K p(σk)] ,       (i = 1,m)                     (12) 
 
while the equivalent to Eq. (4) is 
 

 {Cov(σi,σj)}K = {(Vσ)ij}K = < σi σj >K - < σi >K x < σj >K      (i,j = 1,m) .       (13) 
 
To avoid any confusion, we note that 
 

< σi σj >K = [Σk=1,K σik σjk p(σk)] / [Σk=1,K p(σk)] .       (i,j = 1,m)                 (14) 
 

The sums found in the denominators of Eqs. (12) and (14) are included there to 
insure proper normalization. The index “K” that appears as subscripts in Eqs. (12) 
through (14) suggests, and rightfully so, that the values determined using these equations 
will indeed depend quite strongly on the number of histories K, at least for relatively 
small K. In fact, for small K the results are most likely meaningless. However, as K 
becomes large it is anticipated that these quantities should converge toward the values 
that would be obtain if the corresponding integrations were actually performed as 
originally indicated in Eqs. (2) through (4). How large does K have to be to achieve 
acceptable convergence? This can be determined only from experience.  In any event, 
direct deterministic computation of such integrals in those cases where σ has very many 
components is likely to be impractical, even with contemporary computational 
capabilities. On the other hand, one hopes that a good approximation to these integrals 
might be obtained through the Monte Carlo simulation route. This approach has been 
demonstrated to work very well in the analysis of complex nuclear systems, e.g., through 
widespread applications of codes such as MCNP. Therefore, it seems reasonable to apply 
in the present context of nuclear data evaluation. 
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 So, the present UMC method essentially amounts to employing Bayes Theorem 
and the Principle of Maximum Entropy, along with the given prior and measured values 
and their covariance matrices as constants, to generate a posterior probability density 
function p for the random variables σ that correspond to the evaluation in question. The 
final evaluated values < σ > are therefore first moments (or mean values) of the 
probability density function p while the elements of the solution covariance matrix Vσ are 
derived from the second moments of p. The integrals required to determine the mean 
values and the covariance matrix elements are computed by Monte Carlo integration 
rather than by deterministic numerical methods. Will this approach work? In principle 
“yes”, but in practice it remains to be demonstrated. Is it a practical approach? Again, this 
must be ascertained from experience gained in applying the method to realistic situations. 
 
 At this point it is worthwhile to enumerate the advantages of the UMC evaluation 
scheme described above before proceeding to the next section of this Report. 
 
(1) The method is quite rigorous, as long as the errors are not too large, and it 
involves no conceptual mathematical approximations. 
 
(2) The method employs the Monte Carlo simulation technique fully in contrast to 
earlier schemes which are either completely deterministic or hybrid combinations of MC 
and deterministic analyses. 
 
(3) This method does not suffer from limitations arising from the assumptions of 
linearity which are usually imposed, e.g., in the generalized least-squares (GLS) method. 
Therefore, it is capable of handling situations where significant non-linearities may result 
from the structure of nuclear models or from inclusion of complicated experimental data. 
 
(4) The UMC method incorporates the MC simulation concept suggested earlier by 
this author in the context of generating prior information [4], and extends it to encompass 
experimental data as well. 
 
(5) Correlated uncertainties can be handled with no obvious limitations. 
 
(6) This method is anticipated to yield results which are consistent with what would 
be obtained by the widely used generalized-least squares (GLS) method in situations 
where the uncertainties are small and any encountered non-linear effects are modest. 
 
(7) The method is very straightforward to program for a computer since the formulas 
are simple. The numerical “bookkeeping” chores should also be relatively modest. 
 
(8) The input values (calculated and experimental) need not be randomly varied in 
complicated ways in order to deal with correlations, etc. All information about the data 
values, uncertainties, and correlations is completely contained in the fixed arrays of 
numbers yE, VE, σC, and VC. Furthermore, the two covariance matrices, VE and VC, need 
to be inverted only once, regardless of the number of histories K considered. 
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(9) Those variables that DO need to be randomly varied in the UMC approach, i.e., 
components of the solution vector σ, are selected independently by means of uniform 
sampling within well-defined intervals.  
 
(10) The method can handle a wide variety of experimental data (differential, ratio, 
integral, etc.) as long as well-defined functional relationships exist between the variables 
that these data represent (y) and the solution variables σ. 
 
(11) There are no limits, in principle, to the statistical precision that can be achieved 
for the evaluated solution by the UMC method. 
 
(12) The probability density function p(σ) does NOT need to be normal with respect to 
the variables σ as is required for the generalized least-squares (GLS) approach to be 
strictly valid. Yes, Eq. (7) does “appear” to be a normal distribution, but it will not be a 
true normal distribution with respect to the variables σ if the measured quantities 
(represented by the “y” vectors) involve ratios or other complicated combinations of the 
components of σ. 
 

What is the price to pay for these many advantages? Basically, this method is 
quite demanding of computational resources. When this author published ref. [1], he 
“hinted” at this method but dismissed it at the time (1991) as probably impractical 
because of the computational demands. But, much has changed in the intervening 16 
years. Computational power has increased by several orders of magnitude (e.g., even for 
PC’s) while cost has dropped dramatically. Perhaps the UMC method will continue to be 
viewed as excessively demanding of computational resources, but it should be 
remembered that the power of computers continues to increase exponentially according 
to Moore’s Law. Also, as this author pointed out at the ND-2004 conference [5], much of 
the available computational power in research centers still goes unused. There is no 
reason why individual PC’s or workstations should be dormant during nights and 
weekends. Also, calculations such as these can run in the background while other real-
time tasks that are relatively undemanding of processor capability are being performed in 
the foreground, e.g., word processing. So, it would appear that with the application of 
some common sense on the part of evaluators concerning the choice of variable sampling 
limits and procedures, etc., the UMC method should be quite feasible with the 
computational resources currently available to them. Furthermore, the time and effort 
required to prepare input information for an evaluation, e.g., insuring that the 
experimental information which is extracted from compiled libraries such as EXFOR is 
properly interpreted and prepared for its use in the evaluation, is still likely to exceed the 
computational time associated with applying the UMC method to produce the evaluation. 
 
 

3.  Practical Considerations 
 
 Before proceeding to demonstrate the UMC method through some simple 
examples, it is necessary to discuss several practical matters. 
 

 14



(i) The Convergence Issue 
 

The UMC method will fail unless it can be demonstrated that the quantities 
computed by means of MC simulation using Eqs. (12) through (14) actually converge as 
K becomes large. For this reason, it is important to perform some representative tests of 
convergence as part of the evaluation process. If Q represents a quantity whose 
convergence is to be examined, then the general formula used to test convergence is 
 

<Q>K = [Σk=1,K Qk gk] / [Σk=1,K gk] .                                      (15) 
 
Depending on the quantity Q whose convergence is being estimated, gk might assume the 
values gk = p(σk) or gk = 1. In any event, a simple plot of <Q>K versus K can be very 
revealing as a means to estimate qualitatively whether convergence is actually taking 
place. Several examples of this are shown in Section 4. As a general rule, the quality of 
convergence will hinge on three considerations: (i) the quality of the random number 
generator (RNG) used in the MC simulation, (ii) the “volume” V(S) of the sampling 
space S, and (iii) the numerical precision employed in the analysis. Very good quality 
RNG’s are available, so this should not be an issue. In choosing the sampling region, one 
should be certain that it is large enough so that outside this region the magnitude of the 
posterior probability density function p is vanishingly small. More precisely, if a sampled 
vector σk is not contained in S, then p(σk) ≈ 0. Of course, one could insure this by 
choosing S to be very large. However, the penalty to pay for such a conservative choice 
would be that K would need to be very large to achieve acceptable convergence. Much 
computational time would then be “wasted” on calculations corresponding to regions of 
the space S that yield negligibly to the desired weighted-average quantities. However, if 
S is chosen too small then convergence might be observed after a relatively small number 
of histories K, but this convergence might NOT be to values close to the true values of 
the integrals which are being approximated. This could be described as an “incomplete 
integration” effect. Again, experience would have to be the guide in dealing with this 
issue in each individual instance. Finally, it is certain that a wide dynamic range of real 
number values will be encountered in computations of the p(σk) weighting factors. 
Therefore, a high degree of numerical precision is essential in performing realistic 
evaluations if one aims to achieve accurate results that are not afflicted by numerical 
round-off effects. These issues are explored on a small scale in the examples presented in 
Section 4. They should be more thoroughly investigated for realistic evaluation exercises. 
 
(ii) Compatibility of the Prior and Experimental Information 
 

The input experimental and model-calculated information must be compatible. 
What do we mean by “compatibility”? In setting up an evaluation exercise, no matter 
what method is used, the evaluator has to define grid points (or node points if you prefer) 
that establish the scope of the evaluation. These grid points are characterized by such 
parameters as incident neutron energy, particle emission angle, etc. The final ENDF-
formatted files are uniquely defined by these choices. As indicated above, the situation is 
unambiguous as far as the model-calculated results are concerned. They can be generated 
in a straightforward manner for all selected node points. 
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However, for experimental results the situation is murkier. There are two issues 

involved. Consider the first one. As suggested above, there is a reason why prior and 
posterior (solution) quantities are labeled “σ” while “y” is used to designate experimental 
results. The experimental results may be more complicated than simple cross sections. To 
reinforce this point, and to clarify what is meant by “compatibility”, let us consider a 
particular example. Among the experimental data included in vector yE, let us consider 
one particular component, e.g., yE7. We suppose that this experimental value corresponds 
to a measured differential cross section ratio involving cross sections associated with grid 
points 6 and 18. Thus, we require that y7 = f7(σ) = (σ6/σ18). This must be reflected in the 
explicit expression for p(σ). An even more complicated situation arises if the measured 
quantity is an integral value. Suppose that a particular component of yE, e.g., yE3, is a 
spectrum-averaged value measured in a well known spectrum such as the 252Cf 
spontaneous-fission neutron spectrum. Let the vector φ represent this spectrum 
(normalized) in group format. Then, we require that y3 = f3(σ) = φT • σ, where “T” 
signifies the transpose of the indicated vector. In practice, matters can become even more 
complicated. To be perfectly compatible, all input experimental information must be 
adjusted to correspond to the selected grid points. Thus, e.g., the group representation φ 
for the 252Cf spontaneous-fission neutron spectrum must be expressed in terms of grid-
point parameters. The same is true for ratio quantities. A particular example will clarify 
this point. Referring to the discussion above, let us suppose that the neutron energy 
corresponding to grid point 6 is 5 MeV while that for grid point 18 is 14 MeV. Then y7, 
as defined above, is meant to represent a ratio corresponding exactly to these two 
energies. However, let us suppose that the measured value yE7 actually corresponds to a 
ratio involving experimental energies 4.9 MeV and 14.1 MeV. Then, it is necessary to 
adjust the measured value yE7 as needed so that it is compatible with y7. These details are 
not unique to the present method. In principle, they need to be considered in order to 
apply correctly any of the more commonly used evaluation techniques, including the 
generalized least-squares (GLS) method. It easy to see why it is so challenging – and 
perhaps even folly – to try and automate the evaluation process! 
 
(iii)   Generating the Prior Values and Their Covariance Matrix 
 

A MC approach to addressing the problem of uncertainties for priors derived from 
nuclear modeling was suggested by this author a few years ago [4]. It has been 
implemented successfully by several laboratories so there is no need to discuss this point 
in any detail in this report. This approach basically amounts to an error propagation 
exercise that is performed via MC simulation rather than deterministically. The advantage 
is that the method does not insist on an assumption of linearity so relatively large 
uncertainties can be accommodated without sacrificing accuracy. The outcome is 
unambiguous as long as the number of sampling histories is sufficient. To date, most such 
analyses have been carried out using 1000 histories. Based on the observed outcomes, 
this is probably adequate in practice. However, no comprehensive studies of convergence 
have been carried out, at least to the knowledge of this author. It would be worthwhile to 
investigate this point and it should not be very demanding to do so. 
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Current discussions within the nuclear data evaluation community concerning 
applications of the MC and other fast-neutron cross section data evaluation schemes that 
rely on nuclear modeling to generate priors revolve around how to best estimate the 
central values of the nuclear model parameters as well as their uncertainties and 
correlations. While this is an important issue, these deliberations do not impact on the 
potential success or failure of the UMC method. All that is needed to proceed with the 
present approach is that σC and VC be provided, since they are required to construct the 
prior probability density function p0. This prior information, and the experimental 
information that is to be merged with it to generate an evaluation, should in principle be 
independent. Therefore, it is very desirable, for conceptual reasons, that the selection of 
nuclear model parameters and their uncertainties be influenced as little as possible by the 
specific nucleus for which the evaluation in question is being carried out. A reasonable 
way to achieve an adequate degree of independence is for the choice of nuclear model 
parameters used to generate the prior to be guided by global considerations, e.g., by 
knowledge gained from consideration of a wide range of nuclei across the Periodic Table 
rather than strictly by narrow regional or local nuclear model behavior. It is a matter of 
judgment and experience as to how this should be approached in practice. As long as an 
evaluator is aware of this issue, and takes some precautions aimed at achieving a decent 
measure of independence for the prior information and the experimental information for a 
specific nucleus, it is anticipated that reasonable evaluated results can be produced. 
Experience shows that the correlations for the prior values tend to be rather large. It 
appears that the nuclear models themselves, rather than the specific properties of the 
model parameters, are the major sources of correlations encountered when priors are 
determined from nuclear modeling.  
 
(iv) Preparation of the Experimental Data 
 

The need to adjust experimental data so that they will correspond to calculated 
values at the selected grid points has been mentioned above. Here we are concerned with 
the actual quality of the compiled experimental data. There can be no disputing the fact 
that utilization of poor quality experimental data and incomplete or improperly 
constructed covariance matrices can thwart the evaluation process. The rule “garbage in, 
garbage out” applies regardless of the evaluation method. It is no less true in applying the 
present UMC method. The need for weeding out bad data, applying adjustments for 
changes in standards, enhancing some unrealistically small assigned uncertainties, and 
other data “preparation” steps is widely acknowledged by evaluators as necessary if one 
is to achieve reasonable evaluated results. This is reflected in the recent decision by 
WPEC to establish Subgroup 30 with the objective of eliminating some of the worst 
defects currently lurking in the database EXFOR. There can be little doubt that attending 
to the sorry status of the compiled experimental database – a resource that represents 
many decades of effort and huge expenditures of financial resources – is one of the major 
challenges now facing the nuclear data evaluation community. 
 

In this report we outline the procedure for preparing the covariance matrix for a 
single experimental data set. This procedure is discussed extensively in ref. [1] so the 
discussion in this report is brief to avoid unneeded repetition. Let us suppose that we have 
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a collection of N experimental data values. Furthermore, assume that there are B distinct 
(independent) sources of experimental error (β = 1,B). Then, assume that eiβ (i = 1,N; β = 
1,B) is the magnitude of the absolute error component for the ith data point corresponding 
to the βth error source. Finally, assume that Cβij (i,j = 1,N; β = 1,B) is an element of the 
matrix Cβ that describes the correlations associated with the βth error source. The (i,j)th 
element of the covariance matrix for the entire experimental data set is then given by the 
formula 
 

Vij = Σβ=1,B  (eiβ x Cβij x ejβ) .                                          (16) 
 
If the βth error component is completely uncorrelated (random) for all data points in the 
set, then Cβij = δij (the Kronecker delta function that equals 1 when i = j and 0 when i ≠ j). 
When a particular error component is 100% correlated between all the data points, then 
Cβij = 1 for all i and j. Partial correlations (i.e., neither 0 nor 1, and possibly negative) are 
also possible for certain types of errors, but their estimation tends to be more subjective.  
 

While this procedure is reasonably straightforward in theory, what is an evaluator 
actually to do in practice? Very few authors of experimental data sets provide complete 
covariance matrices for their reported results, and many fail even to identify the distinct 
error components involved in their experiments. An evaluator could choose to assume 
that all the errors are uncorrelated. However, it has been shown that the danger of doing 
this in situations where extensive experimental data are available is that the final 
uncertainties for the evaluated results will be unrealistically small. It is well known that a 
neglect of correlations generally leads to excessively small evaluated uncertainties. The 
experience of this author has been to handle this dilemma as follows: First, make sure 
that the given total errors are at least realistic. If not, an evaluator may wish (using 
caution) to enhance the given errors to values more in line with what one might 
reasonably expect them to be for an experiment of this nature. Concerning correlations, 
the evaluator should keep in mind that total error correlations (positive or negative) with 
magnitudes in the range < 0.3 should be treated as weak while those > 0.7 (but of course 
≤ 1) should be considered as strong. All correlations in the mid range of (0.3 to 0.7) are 
moderate. As an example, if the total error is 5% and the correlated error is 4%, then the 
random error will be 3% and the correlation will be 0.8 (which is relatively strong). If an 
author states only the total error and provides no further details that would enable an 
evaluator to assign objective correlations, then the evaluator might decide to apportion 
the total uncertainty evenly between random and fully correlated components (e.g., 5% 
random and 5% fully correlated yields ≈ 7% total error). Then the correlation coefficient 
would be 0.5 which is moderate. This is a reasonable choice under such circumstances. 
The evaluator could defend this choice by referring to a well known philosophical 
principle known as Occam’s Razor, attributed to William of Occum (1320): “When 
confronted with multiple options for addressing a problem, choose the simplest one.” 
 
(v) Consistency of the Model-Calculated and Experimental Information 
 

We need to distinguish “consistency” from “compatibility”. The issue of 
“compatibility” is discussed above. By examining the data “consistency”, we are 
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studying the relative scatter of the results that are to be used in an evaluation. In the 
generalized least-squares formalism (GLS) it is shown that there exists a chi-square (X2) 
test of input data consistency that can be applied before the GLS analysis is performed 
(e.g., refs. [1] and [2]). However, since this test involves only the input data it seems 
reasonable to consider applying it in the present UMC methodology. The formula used in 
this test of consistency is as follows: 
 

X2/(d.o.f.) = [(yE – q)T • (Vq + VE)-1 • (yE – q)] / n .                         (17) 
 

This expression, as well as some of the quantities appearing therein, requires 
some explanation. In the GLS formalism, the degrees-of-freedom parameter (d.o.f.) is 
just the number of experimental data values “n”. The quantities yE and VE require no 
explanation; they are defined above. The vector q is the collection of n calculated 
equivalents to the measured data based on prior values of the variables to be evaluated 
(NOT on solution values), i.e., on σC and VC. In other words, q = f(σC). Furthermore, Vq 
is an “n x n” covariance matrix which is computed by propagating the errors of σC, as 
reflected in the covariance matrix VC, through to Vq via the functional relationships 
represented by f. It is clear from Eq. (17) that the matrix (Vq + VE) needs to be inverted, 
so it must first be tested for positive definiteness. Basically, Eq. (17) provides a means to 
compute the scatter of the experimental data relative to equivalent calculated values (the 
word “equivalent” is significant here), scaled by the combined uncertainties of the 
experimental and calculated results. The general rule to follow is that when X2/(d.o.f.) ≤ 
1, then the uncertainties in the evaluated results generated by the UMC method ought to 
be accepted as they are. However, if X2/(d.o.f.) is significantly larger than unity, one 
might consider enhancing all the evaluation solution uncertainties by the factor 
[X2/(d.o.f.)]½ without altering the correlations. Taking this step amounts an to an honest 
admission by the evaluator that the actual source (or sources) of discrepancies in the input 
information cannot be uncovered so he (or she) chooses to “spread the guilt” uniformly 
by enhancing all the solution uncertainties. Perhaps this approach should be viewed as 
resorting once again to Occam’s Razor. 
 
 

4.  Numerical Examples 
 
 We begin this section by stating that “… the proof of the pudding is in the 
eating”. With this in mind, we consider a few relatively simple examples that seem 
appropriate to the development of the UMC method, at least from a numerical 
perspective. For this purpose, EXCEL spreadsheet routines were used in all the 
calculations except for the one pertaining to GLS. The idea behind this choice is that if 
the present method can be demonstrated to be viable by using such a relatively 
unsophisticated computational tool, then so much the better. For the most part, 1000 
histories have been employed for each case considered. However, in a few instances 10 
repetitions of 1000 histories each were undertaken. These results were then further 
averaged to yield what amounts to the equivalent of results obtained from 10,000 
histories (to improve statistical precision). 
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Example 1 

 
In this example we consider a simple test of “randomness” for a table of 1000 

random numbers (RN) generated by EXCEL. If a collection of numbers drawn uniformly 
from the range (0,1) is truly random, then we would expect their average <RN> to be 
precisely 0.5. Any deviation from this outcome provides some measure of the departure 
from randomness or, more likely, a reflection of statistical uncertainty associated with the 
limited sample size. If (RN)k is one member of this collection, then our test of 
convergence to the theoretical value is based on the formula 
 

<RN>K = [Σk=1,K (RN) k]/K ,                                             (18) 
 
which is just a special case of Eq. (15) with all gk = 1. In this example, the result obtained 
for K = 1000 is 0.4906 (rounded to four significant figures). This is not unreasonable 
considering that a 3% uncertainty might be anticipated from statistical considerations. 
Fig. 1 is a plot of the actual values of the 1000 randomly selected numbers. 
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Figure 1: Scatter plot showing 1000 uniformly selected random numbers from the 
interval (0,1) 
 

Is there a pattern to be discerned in Fig. 1? Humans have a notorious reputation 
for seeing patterns where none really exist so it’s up to the reader to decide the answer to 
this question for himself (or herself). What is even more interesting is to plot the results 
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of 1000 applications of Eq. (18), i.e., for K = 1 to 1000, based on the random number set 
generated for this example. The results appear in Fig. 2. 
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Figure 2: Plot of <RN>K as a function of K for the random number set of Example 1 
 

In this case it is clear that a pattern does emerge. As K becomes large, the values 
of <RN>K do appear to approach 0.5. However, it is also clear that the “goal” has not 
been quite reached by K = 1000, and that for many values of K < 1000 the computed 
average is indeed significantly different from the theoretically “correct” value of 0.5. 
 
 This simple exercise has little to do directly with the UMC method under 
discussion in this report. It is included here to offer the reader some insight as to what 
numerical issues need to be considered when applying the UMC method and to illustrate 
the concept of “convergence”. 
 
 

Example 2 
 

Let us proceed to a slightly more complicated situation. Instead of one set of 1000 
random numbers we generate two such sets by selecting all the individual numbers 
uniformly from the interval (0,1). Let us denote the individual random values from these 
two sets by xk and yk, respectively. Next, we generate 1000 values zk by computing 
products of xk and yk. Thus, zk = xk x yk. A scatter plot of the 1000 values of zk is shown 
in Fig. 3. 
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Figure 3: Scatter plot of random values zk = xk x yk where xk and yk are independent 
random numbers uniformly selected from the interval (0,1) 
 

The reader will find no difficulty in discerning a pattern in Fig. 3. There is a 
decided “clumping” of zk values toward the lower end of the interval (0,1). Why? Even 
though xk and yk are random and uniformly distributed in this interval, their product is a 
non-linear function of these two variables so it will NOT be uniformly distributed in 
(0,1). Such is the nature of non-linear behavior. 
 
  Next, we look for convergence of <z>K as K approaches 1000 in much the same 
manner as was done in Example 1. The formula that we plot is 
 

<z>K = [Σk=1,K zk]/K .                                                  (19) 
 
The results are shown in Fig. 4. 
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Figure 4: Plot of <z>K as a function of K based on two sets of uniformly distributed 
random numbers drawn from the interval (0,1) 
 

The behavior shown in Fig. 4 is qualitatively similar to what is observed in Fig. 2 
of Example 1. Convergence toward the theoretical value of 0.25 is observed but it is 
slow. The value of <z>K observed for K = 1000 is 0.2549 (rounded to four significant 
figures). The reader will also note that 0.25 is the value of the simple double integral 
defined explicitly by the expression ∫01∫01 (xy) dxdy. Thus, we have demonstrated the 
computation of a multi-variable integral by Monte Carlo simulation through this example. 
 
 

Example 3 
 

Next we consider an example which in its design is a step closer to what we 
actually will need to consider if we are to demonstrate the UMC method. Suppose that x 
and y are independent random variables with the following properties: <x> = 0.5, SD(x) 
= 0.2, <y> = 0.5, SD(x) = 0.2. Here, <…> signifies mean value and “SD” stands for 
“standard deviation”. Thus each variable has a mean value of 0.5 and standard deviation 
of 0.2. This represents quite a large error (40%) for each variable. As a consequence, 
these variables probably ought to be represented by lognormal probability distributions 
[6]. Nevertheless, for present purposes we shall consider them to be normal and, 
furthermore, we will sample these variables uniformly in the range (0,1). This essentially 
limits the sampling space to a little more than two standard deviations (2-Sigma) to each 
side of the respective mean values. It will be interesting to learn whether this is sufficient. 
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By definition, the bivariate probability density function governing the two random 
variables x and y is given by 
 

p(x,y) = C x exp[-(½) x (1/0.04)(x2 + y2)] = C x exp[-(12.5) x (x2 + y2)] ,       (20) 
 
where “C” is a normalization constant that we assume to be unity for convenience.  
 
 Application of the present methodology involves Monte Carlo calculations based 
on Eqs. (7), (9), (10), (12) through (14), and (15). The number of histories traced in this 
exercise is 1000. The first test is to examine the convergence of <p(x,y)>K with 
increasing K. This is accomplished using Eq. (15) with Qk = p(xk,yk) and gk = 1. The 
results are plotted in Fig. 5. 
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Figure 5: Convergence of <p(x,y)>K versus K based on Eq. (20) 
 

It is evident that reasonably good convergence is achieved as K approaches 1000. 
Next, we examine the convergence of <x>K using Eq. (15) with Qk = xk and gk = p(xk,yk). 
The results are plotted in Fig. 6. 
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Figure 6: Convergence of <x>K versus K based on Eq. (20) 
 

Clearly, the convergence of <x>K with increasing K is quite rapid. In fact, very 
little change is seen after ≈ 300 histories. The complete results from this exercise are 
summarized in Table 1. 

 
Table 1: Summary of results obtained for Example 3 

 
Quantity MC Actual 
<x> = 0.505466349 0.5 
var(x) = 0.036509305 0.04 
SD(x) = 0.191074082 0.2 
   
<y> = 0.499706076 0.5 
var(y) = 0.038696771 0.04 
SD(y) = 0.19671495 0.2 
   
Cov(x,y) = 0.000679885 0 
Note: The values in this table were copied directly from the EXCEL worksheet 

 
The results obtained from the present MC exercise are certainly consistent, within 

statistically reasonable expectations, with the actual values that were known at the outset 
of this exercise. 
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Example 4 
 
The last example to be considered here includes all the essential aspects of a 

realistic evaluation problem, but it is simplified to the point where the analysis is both 
straightforward and transparent. In spite of the simplicity, it serves the purpose to 
demonstrate the viability of the UMC method proposed in this report. 
 
 The mathematical “model” chosen for this example is defined by the function 
 

s(E) = p1 x E x exp(-E/p2) ,                                    (21) 
 
where p1 and p2 are the “parameters” of the model and E is a continuous variable. We 
arbitrarily choose the mean values and errors (standard deviations) of these model 
parameters as follows: <p1> = 10, SD(p1) = 1, <p2> = 2, and SD(p2) = 0.2. Furthermore, 
we assume these parameter errors to be uncorrelated. Our assumption indicates that the 
parameter uncertainties are 10%. A plot of this function is shown in Fig. 7. 
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Figure 7: Plot of s(E) = p1 x E x exp(-E/p2) with parameters p1 = 10 and p2 = 2 
 

Although it is irrelevant for the present exercise, the shape shown in Fig. 7 is not 
radically different from what one might expect for the differential cross section of a low-
threshold neutron reaction. For example, compare the shape in Fig. 7 to the shape of the 
58Ni(n,p)58Co differential cross section, as shown in Fig. 8.  
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Figure 8: Plot of the 58Ni(n,p)58Co cross section retrieved from BNL-NNDC 
 
 To narrow the scope of this example, we choose to consider only two grid points 
for the present evaluation. These are defined by E = 1 and E = 3 (units are irrelevant 
here). Using the “model” described above, it is straightforward to determine the two 
calculated values which form a vector that we label sC. The two components are sC1 and 
sC2. To insure that there will be no confusion regarding this exercise, we have replaced 
“σ” by “s” (for both model-calculated and experimental results) since we are not dealing 
with actual cross sections in this example. Continuing with the analysis, we use the MC 
methodology described in ref. [4] to determine the corresponding covariance matrix VC. 
The parameters p1 and p2 are sampled randomly from uniform distributions whose limits 
are consistent with the assigned mean values and standard deviations. The details are 
omitted for brevity. Values for the priors to be used in Example 4 are given in Table 2. 
 
Table 2: Calculated values that constitute the two elements of sC along with their 
corresponding covariance matrix VC; this analysis is based on the two-parameter model 
defined by Eq. (21) with the parameter values and their uncertainties as indicated above. 
 

Grid Index (i) Ei sCi SD(sCi) Error (i) Covariance Matrix (VC) 
1 1 6.0653 0.67896 11.19 % 0.46099 0.71303 
2 3 6.6939 1.2106 18.09 % 0.71303 1.46556 

Note: the numerical values shown here are rounded to better fit the table, but all numerical calculations (including the 
MC simulation) have been performed using the full precision inherent to EXCEL 
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The covariance matrix VC is positive definite so it can be inverted. The correlation 

matrix for the calculated values of sC is 0.8675 (to four significant figures), or 86.75%. 
This strong correlation is typical of what one generally obtains from calculations using 
much more complicated and realistic nuclear models. Incidentally, a deterministic “hand” 
calculation of the elements of VC was also carried out. These results agree extremely well 
(to several significant figures) with the MC results in Table 2. This supports the MC 
approach described in ref. [4]. So, calculated values intended to serve as the priors for the 
present example, along with their covariance matrix, are produced using the simple 
model described above. This yields half of the input information required for this UMC 
evaluation exercise. 
 
 The next step is to introduce two pseudo “experimental” data points, represented 
by sE, which are intended to be used in conjunction with the calculated prior values in the 
present UMC evaluation. We choose values for these “experimental” data that are not in 
very good agreement (inconsistent) with the corresponding model-calculated ones. These 
“experimental” data, however, are entirely comparable to the model-calculated results (no 
ratios, no departures from grid points, etc.). In other words the two “experimental” data 
points, sE1 and sE2, correspond to E = 1 and 3, respectively, so they can be compared 
directly with their calculated counterparts, sC1 and sC2. Thus, these “experimental” results 
can be used directly in the evaluation process with no additional preparation required. We 
stipulate that these “experimental” results are fairly accurate (5% uncertainty for each 
data point) and that their uncertainties are strongly correlated (to the extent of 80%). This 
is reflected in the data covariance matrix VE. Table 3 summarizes the “experimental” 
input information for Example 4. 
 
Table 3: “Experimental” values that form the two elements of sE along with their 
corresponding covariance matrix VE for use in Example 4 
 

Grid Index (i) Ei sEi SD(sEi) Error (i) Covariance Matrix (VE) 
1 1 6.5 0.325 5 % 0.105625 0.0793 
2 3 6.1 0.305 5 % 0.0793 0.093025 

 
The calculated and “experimental” values (minus error bars) are plotted in Fig. 9. 

 

 28



Calculated and "Experimental" Values

5

5.5

6

6.5

7

0 1 2 3 4

E

s sC
sE

 
 

Figure 9: Plot of calculated and “experimental” data considered in Example 4 
 

This exercise of merging strongly correlated calculated results having relatively 
large uncertainties with “experimental” values having much smaller uncertainties, but 
also strong correlations, offers a worthy challenge to test the present UMC evaluation 
method. Our goal is to determine by the UMC approach the evaluated quantities s and Vs, 
based on the given input data sE, VE, sC, and VC. Before beginning the UMC analysis, we 
attend to two more chores. First, it is necessary to decide on the limits that define the 
sampling space. As noted earlier, the range must be large enough to ensure adequate 
sampling of the probability distribution p(s) in this example, but not so large that most of 
the computational time is spent in regions of low probability. To start off, we choose to 
randomly sample s1 uniformly in the interval (4,9) and s2 uniformly in the interval (2,10). 
Remember that there are no correlations to consider in carrying out this sampling. These 
intervals are generously large considering the input data as well as solution results we are 
likely to obtain. In fact, we choose to refer to this as the “Wide Limits” condition. It’s 
better to operate under relaxed conditions at the outset and then tighten the constraints 
later if appropriate. The second task is to perform the evaluation using the well-
established generalized least-squares algorithm (GLS), with sE, VE, sC, and VC as input, in 
order to establish a baseline solution for comparison purposes. This second task was 
carried out using code GLSMOD, as described in ref. [2]. 

 
A single UMC simulation exercise was performed first using K = 1000 histories, 

the formalism described in Section 2, the “experimental” and calculated input values, and 
the “Wide Limits” condition. We do not repeat the formulas or procedures here since 
they have already been mentioned several times above. In particular, we avoid giving a 
specific expression for the probability density function p(s) = p(s1,s2) since its form 
should by now be obvious to the reader from the preceding discussions. Following this 
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first exercise, the convergence of <p(s1,s2)>K as a function of K was examined. The 
results are shown in Fig. 10. We assume C = 1 for convenience. 
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Figure 10: Plot of <p(s1,s2)>K as a function of K for Example 4 
 

The profile in Fig. 10 looks like an approaching tsunami! It is not surprising that 
such a dramatic pattern would be generated since the probability density function p(s1,s2) 
varies over many, many orders of magnitude as the variables s1 and s2 are sampled 
uniformly throughout the space of values allowed by the “Wide Limits” sampling rule. In 
fact, different strings of 1000 randomly selected variables s1 and s2 generate quite 
different patterns. What matters, though, is whether there is clear evidence of 
convergence of <p(s1,s2)>K for values of K approaching 1000. An examination of Fig. 10 
would suggest that no such clear evidence exists. Therefore, K = 1000 histories is 
probably insufficient, at least when the sampling limits are set rather wide as is the case 
for the “Wide Limits” condition. With this in mind, nine additional independent sets of 
1000 randomly selected pairs of values s1 and s2 were generated and the same analysis as 
described above was carried out for each set. The accumulated results were then averaged 
to yield what we would anticipate achieving with 10,000 histories. Figure 11 is a rather 
busy plot that shows the “experimental” and calculated values, the results of the GLS 
evaluation exercise, the results from 10 independent UMC evaluations with 1000 
histories each and, finally, the averaged UMC results. 
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Figure 11: Plot of input data and results obtained from GLS as well as the UMC 
calculations performed using the “Wide Limits” condition 
 

The results for individual UMC simulations based on only 1000 histories scatter 
noticeably with respect to the GLS solution. Nevertheless, the tendency toward 
agreement with the GLS results is clearly evident. When the results from all 10 MC 
simulations are averaged, the resulting average values are very close to the GLS solution 
results. The outcome from this example strongly suggests that the UMC approach 
described in this report is capable of yielding results that agree very well with GLS 
under the stated conditions. The only apparent limitation is the number of sampling 
histories. The plot in Fig. 11 gives us only a qualitative view of the outcome. The 
numerical results are summarized in Table 4. 
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Table 4: Results obtained for Example 4 from GLS as well as the average of 10 UMC 
calculations with 1000 histories each performed using the “Wide Limits” condition  
 
Quantity <UMC> GLS Difference 

<s1> 6.245356668 6.23653 0.14% 
<s2> 6.002441299 5.99151 0.18% 
       
Var(s1) 0.072517244 0.075551 -4.18% 
SD(s1) 0.267397945 0.274865 -2.79% 
% Err(s1) 4.28% 4.41% -2.96% 
       
Var(s2) 0.076383333 0.0812184 -6.33% 
SD(s2) 0.275075323 0.284988 -3.60% 
% Err(s2) 4.58% 4.76% -3.76% 
       
Cov(s1,s2) 0.058017645 0.0618054 -6.53% 
Cor(s1,s2) 0.772758502 0.789003 -2.10% 

Note: The numerical values given here are taken directly from the EXCEL spreadsheet 
 

Other than the fact that the solution value <s2> is smaller than either of the input 
values sE2 or sC2 (perhaps not unusual considering the discrepant input information and 
strong correlations involved in this exercise), the results from the GLS and UMC 
approaches appear to be quite reasonable and consistent with each other. 
 
 There is one more matter to consider. What happens if the sampling limits are 
tightened significantly? To explore this possibility, we suppose that the sampling limits 
on s1 are (5.4,7.1) while those for s2 are (5.1,6.9). This is referred to as the “Tight Limits” 
condition. The 10 sets of UMC calculations described above were repeated with the 
outcome shown in Fig. 12 and Table 5. 
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Figure 12: Plot of input data and results obtained from GLS as well as UMC calculations 
performed using the “Tight Limits” condition 
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Table 5: Results obtained for Example 4 from GLS as well as the average of 10 UMC 
calculations with 1000 histories each performed using the “Tight Limits” condition 
 
Quantity <UMC> GLS Difference 

<s1> 6.238185665 6.23653 0.03% 
<s2> 5.988849267 5.99151 -0.04% 
       
Var(s1) 0.072690798 0.075551 -3.93% 
SD(s1) 0.269492943 0.274865 -1.99% 
% Err(s1) 4.32% 4.41% -2.02% 
       
Var(s2) 0.081322156 0.0812184 0.13% 
SD(s2) 0.284996909 0.284988 0.00% 
% Err(s2) 4.76% 4.76% 0.05% 
       
Cov(s1,s2) 0.060507895 0.0618054 -2.14% 
Cor(s1,s2) 0.786451732 0.789003 -0.32% 

Note: The numerical values given here are taken directly from the EXCEL spreadsheet 
 
 

The individual results of the 10 separate UMC calculations with 1000 histories all 
cluster much more closely around the GLS values for the “Tight Limits” sampling 
condition than they do for the “Wide Limits” sampling condition. Furthermore, the 
averages of these UMC results are almost identical to the GLS result. This supports our 
original contention that to achieve good results with the UMC approach it is necessary to 
find the right combination of sampling limits and MC sampling histories. Skill in doing 
this can be acquired from experience. The technique of examining convergence of the 
various computed averages, as considered in this example as well as the preceding ones, 
is also helpful in obtaining reliable results. 
 
 Finally, we apply the test for consistency of the input data as it is described above 
and reflected in Eq. (17). The outcome for the input information of this example is 
X2/(d.o.f.) = 1.7372 (to five significant figures). Therefore, in accordance with the 
discussion above, we may be justified in multiplying the solution uncertainties by the 
square root of this number in order to compensate for the discrepancy indicated by this 
test. This would lead to an increase in the uncertainties derived by the UMC evaluation 
method by ≈ 30 % to values on the order of 6 %. 
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5.  Conclusions 
 
 The numerical examples presented in this report suggest that the UMC method 
that is described here is viable and can yield results that are consistent with the GLS 
approach when the conditions that support agreement are satisfied. There was no a priori 
reason to expect that this would not be the outcome since the UMC methodology is quite 
rigorous. On the other hand, the GLS method is NOT completely rigorous. It relies on 
approximating the mean values by those which yield the maximum value for the joint 
probability density function (Maximum Likelihood Assumption). There is also an 
implicit assumption of linearity throughout. If the probability density function is truly a 
multivariate normal distribution with respect to the variables being evaluated, and the 
uncertainties are modest, then the GLS approximation should be quite good. These 
conditions are frequently satisfied when there is a one-to-one relationship between the 
experimental and prior data (model-calculated for most evaluations). These conditions 
are obviously satisfied in Example 4, so the good agreement between the GLS and UMC 
methods, when the number of traced MC histories is sufficient, had to be anticipated. 
However, if the “experimental” data included in the evaluation procedure were to involve 
more complex relationships between the evaluated variables and what is actually 
measured, e.g., ratios, integral quantities, etc., and possibly large uncertainties and 
discrepancies are present, then the probability density function could deviate significantly 
from a normal one and become decidedly skewed. The GLS and UMC solutions would 
then be expected to differ significantly. Under such circumstances, the UMC solution 
would be the more defensible one and the GLS solution more suspect. 
 
 So, we end this report with the following general conclusions: 
 
(1) The UMC method, while more demanding of computational power than the GLS 
method, nevertheless appears to be viable. (Actually, much of the computational time in a 
UMC evaluation will be spent in multiplying matrices.) So, this method should certainly 
be tested in an actual evaluation exercise. For example, it could be applied to the 89Y 
evaluation test case that is currently being considered by WPEC Subgroup 24. 
Investigations such as this would lead to a better understanding of the tradeoffs between 
large variable sampling volumes and large numbers of MC histories that might need to be 
traced to achieve adequate convergence of the evaluated quantities (mean values as well 
as covariance matrices). 
 
(2) Considering the computational capabilities available today to evaluators, it is 
probably prudent to apply the GLS method of evaluation whenever the circumstances are 
such that its approximations are sufficiently justified. This approach is much less 
computationally intensive than the UMC approach and gives precisely reproducible 
(deterministic) solutions. The conditions suitable for application of the GLS method exist 
when non-linear effects are modest, uncertainties are not too large, and the included 
experimental data are directly comparable to the variables being evaluated, in the manner 
described earlier. However, when it is expected that the probability density function upon 
which a rigorous evaluation should be based is likely to be noticeably skewed by various 
factors discussed above, the UMC approach should definitely be applied. Judicious 
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choices of the sampling limits and numbers of MC sampling histories can potentially 
optimize this process and insure that it is both practical and worthwhile in spite of the 
additional computation time required to perform a UMC evaluation. 
 
(3) Computers continue to evolve at a rapid pace, becoming faster and providing 
more storage capacity at an ever decreasing cost year after year. Eventually, within a very 
few years, it should become practical to perform ALL fast-neutron reaction cross section 
evaluations by the UMC method. This approach would insure that biases associated with 
approximations such as those inherent to the GLS method or various older or even 
relatively contemporary evaluation methodologies are avoided and rigor is preserved. 
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