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Objectives 

• Develop a three-dimensional thermomechanical model of  a CANDU fuel element using 

MOOSE. 

 

• Examine the efficiency and robustness of  the MOOSE framework for modeling 

CANDU fuel behaviour. 

 

• Assess the feasibility of  using MOOSE to model CANDU fuel. 

 

• Develop a computational infrastructure that enables the analysis of  different fuel types 

such as hyperstoichiometric UO2 and thoria-based fuels. 

 

• Build the preliminary framework that can be extended to the ultimate goal of  a fully 

coupled 37-element bundle with computational fluid dynamics determining subchannel 

behaviour. 

 

Introduction 

• INL’s Multiphysics Object-

Oriented Simulation 

Environment (MOOSE) is a 

computational framework used 

for solving fully coupled partial 

differential equations using a 

Jacobian-Free Newton Krylov 

(JFNK) numerical method. 

 

• A HORizontal nuclear fuel 

Simulation Environment 

(HORSE) is built upon 

MOOSE. 

 

• RMC is the second institution in 

Canada to have a MOOSE 

license, AECL was the first. 

Future Work 

• Implementation of  sheath creep, position dependent heat generation and additional 

pellets. 

 

• Determine a way of  constraining pellets to remove the fully glued approximation. 

 

• Post-processing and benchmarking. 

Summary 

• Using a state of  the art computational framework, an application for horizontal nuclear 

fuel modeling is being developed.  

 

• Seven pellet model produces convergent results, nine and fifteen pellet models are under 

development. 
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• The ability to perform predictive thermomechanical modeling of  nuclear fuel is of  

utmost importance from the perspective of  industry and the regulators. 

 

• As the geometry of  the model increases from a pellet to a bundle the amount of  

coupled physics that can be included decreases due to computational constraints 
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CANDU Fuel 

• A CANDU reactor core contains 380 or 

480 fuel channels that contain a pressure 

tube. 

 

• The pressure tube contains 12-13 horizontal 

fuel bundles, depending on the reactor. 

 

• A 37-element bundle contains 37 fuel 

elements with 30 or 31 individual natural 

uranium dioxide fuel pellets in a Zircaloy-4 

sheath. 

Results  

• The first step in the feasibility analysis was to determine the behaviour of  the contact 

algorithm.  Results of  contact pressure and penetration as a function of  penalty factor 

were obtained. 

 

• Next step was to add temperature dependent material properties and begin to add 

multiple pellets to introduce pellet-to-pellet contact. 

 

Figure 1: Hierarchy of  MOOSE and its associated applications.  HORSE is 
added to show upon which animals it is to be built. 
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• Coolant and moderator is heavy water pressurized to 10 MPa. 

Figure 2: Isometric and end views of  a CANDU 37-element fuel 
bundle.  
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Parameter Value (mm) 

Axial Chamfer 0.066 

Radial Chamfer 0.63 

Dish Depth 0.2 

Land Width 0.591 

Initial Gap Width* 0.045 

Figure 3: Schematic view of  a cross-section of  a fuel pellet showing 
dimensions. 

*Due to pellet bottoming, the pellet initial rests on the 
bottom of  the sheath and the gap is closed. Therefore, a 

90μm exists at the top. 
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Figure 4: Temperature profile for seven pellet model. 

Figure 5: Hoop stress profile for seven pellet model. 

Figure 6: Temperature contours on laid upon schematic showing sheath bamboobing.  
Deformation exaggerated by a factor of  15. 


