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— Waste Management Issues

= Role of Decay Heat
— Long-term: Design and Utilization of Disposal Space
— Mid-term: Assurance of Adequate Cooling
— Short-term: Reactor Safety Behavior



Potential Fuel Cycle Options

In the context of expanded nuclear generation, fuel cycle strategy becomes important!
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*A specific fuel cycle strategy may include more than one fuel design, reactor design, or fuel treatment process.




Definitions of Three Fuel Cycle Categories

U.S. currently utilizes the once-through fuel cycle in its commercial nuclear power
sector in which low enriched uranium (LEU) nuclear fuels are loaded into light-water
reactors (LWRs) for purpose of power generation, and used nuclear fuel (UNF)
removed following fuel utilization and stored prior to long-term disposal

— Plan is currently undefined; see Blue Ribbon Commission on America’ s Nuclear
Future

Since advent of nuclear era, it has been anticipated that used fuel material could be
processed and fully recycled with intent to better utilize nuclear fuel resources

— Recycling of nuclear fuel has been considered for managing nuclear waste within
USDOE advanced nuclear fuel cycle program in last few years

A modified open cycle can be considered as a nuclear power approach in which fresh
uranium, or thorium, or recovered fuel is used to generate power, and then is
removed from the reactor with the back-end option of being stored in a repository or
re-used at least once to generate additional power

— Modification or treatment of fuel between uses may be required

— Used nuclear fuel is discarded at some point in the fuel cycle when further re-use is
not desirable or possible

Fuel Cycle Boundaries and Limits



AFCI Program Objectives
(from March 2005 Report to Congress)

Reduce the long-term environment burden of nuclear energy through
more efficient disposal of waste materials

— Remove transuranics (TRU) from waste
— More efficient utilization of permanent disposal space
— Significantly reduce released dose and radiotoxicity

Enhance energy security by extracting energy recoverable in spent fuel,
avoiding uranium resource limitations

— Extend nuclear fuel supply

Enhance overall nuclear fuel cycle proliferation resistance via improved
technologies for spent fuel management

— Avoid disposal of weapons usable materials
— Improve inherent barriers and safeguards

Continue competitive fuel cycle economics and excellent safety
performance of the entire nuclear fuel cycle system




Resource Utilization

Theoretical Uranium Utilization
= Natural uranium is

significantly under-utilized
by current and innovative
advanced once-through
nuclear systems

— LWR utilization less than 1%

— Utilization in advanced once-
through systems less than 2%

(assuming complete fuel bdrnup)
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= Any system that requires
enriched uranium fuel will have low uranium utilization

= High uranium consumption is targeted
— 20-50% in modified open
— >90% in full recycle

— In both cases, requires consuming the depleted uranium tails
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Fast Spectrum Breed and Burn Principles

Enriched U-235 (or Pu-239) starter core would be
surrounded by a blanket of fertile fuel

Enriched fuel would produce neutrons that generate
power and convert fertile fuel to fissionable fuel

Irradiated fertile fuel would replace enriched fuel
after original U-235 (or Pu-239) is burned and new
Pu-239 is formed

Use of “Standard Breeders” exploit this physics in
conjunction with reprocessing

=  Complete U-238 conversion and fission, with the
uranium utilization limited only by losses

Breed and Burn concepts promote conversion, but
minimize reprocessing (modified open)

= Once fertile zone dominates, once-through
uranium utilization at the fuel burnup limit






Waste Management Criteria and Benefits

= Radiotoxicity quantifies the effect of exposure (hazard)

— Effectively assumes complete release and uptake

= Repository environment will impact radiological risk
— Regulatory limit is based on released dose
— All material is contained for ~10,000 years

— Plutonium moves slowly, fission products quickly
— Maximum dose results from Np-237 in long-term

= Repository design is typically constrained by thermal limits (heat load)

— For Yucca Mountain license application based on high-temperature
operating mode (HTOM) of the cold repository, criteria were:

e peak temperature below the local boiling point (96 °C) at all
times midway between adjacent drifts

e peak temperature of the drift wall below 200 °C at all time
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Repository Released Dose (YM Example)

= Radiotoxicity alone does not provide any indication of how a

geologic repository may perform

— Different species are more mobile, depending on environment and barriers
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Repository Thermal Response (YM Example)
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Potential for Repository Drift Loading Increase

= Separation of Pu & Am allow

Limited by 200°C | 225 for denser loading of the
Drift Wall Temp. repository
a Emplacement 175 — up to a factor of 6 with

99.9% removal
= Subsequent separation of Cs &

Limited by 96°C o . Sr provides for much greater
Mid-Drift Temp. Limited by 200° benefit
after 1,600 yrs Drift Wall Temp. .
at Closure — up to a factor of 50 with
99.9% removal

=  Removal of Cm further
h 4.0m increases the potential benefit
(with Pu & Am)

— greater than a factor of 100
with 99.9% removal

=  Appropriate waste forms are
needed to take advantage of
this potential
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Transmutation Approach for Improved Waste
Management

= Long-term heat, radiotoxicity, and dose are all dominated by the Pu-241
to Am-241 to Np-237 decay chain

= Destruction of the transuranics (TRU) is targeted to eliminate the
problematic isotopes

= Some form of separations is necessary to extract transuranic elements
for consumption elsewhere

= The transuranic (TRU) inventory is reduced by fission

— Commonly referred to as ‘actinide burning’
— Transmutation by neutron irradiation
— Additional fission products are produced
= |n the interim, the TRU inventory is contained in the fuel cycle
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Fuel Cycle R&D is considering fuel cycle options
(e.g., closed fuel cycle with actinide management)
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— Short-term: Reactor Safety Behavior
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Long-Term Decay Heat - LWR Spent Fuel Example
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= Actinides dominate the decay heat ~60 years after discharge
— Fission products important for decades — spent fuel storage
— Actinides important for final disposal — as shown for repository space utilization
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Mid-Term Decay Heat - Fukushima Example
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= Adequate cooling must be provided for decay heat removal

— Can be problematic for extended loss of power

= Standard correlations show differences in decay power

400
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Short-Term Decay Heat - Reactor Transient Example
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= In modern designs, passive features introduced to remove decay power
— Loss of decay heat power fraction in standard operation
= |n transient conditions, both fission multiplication and decay power important
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Other Important Applications for
Improved Fission Product Decay Data

= Transient behavior is also driven by delayed neutrons
— Both magnitude and timing are important for reactor control

" Fission decay signatures may be useful for material detection
— Unique gammas or other decay particles

— Allow quick scanning for fissionable material content

= |sotopic production (e.g., medical applications) often require very short
irradiation and recovery times

— Short-term decay heat can dictate handling and target requirements
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