Nuclear Structure Opportunities at CARIBU

C.J. (Kim) Lister
Lister@anl.gov
Introduction

Concepts:-

Physics Goals of structure research of neutron rich nuclei.

What do the excess neutrons do?

Single Particle state modification
Correlation modification (pairing)
New Shapes
New Collective modes

Practicalities:-

What we might actually be able to see with CARIBU beams.
Concepts

We should be looking for deviations from “business as usual”…… that is the key.

Is “normal” in fact a special case?
Concepts
Deformation……..

Does it always develop the same?

Look for deviations from the P-Scheme

Does the relationship between inertia and charge change?

Look for deviations from Grodzin’s Rule

Are there new modes of collectivity?

Look for Mixed Symmetry States, etc.

Look for new shapes….and shape transitions?????

X(5), Octupoles, Tetrahedrons etc…….
Practicalities: Collectivity in e-e Nuclei

Where can CARIBU beams take us?..... Can we find new even-even nuclei?
Practicalities: B(E2)s in e-e nuclei

Measured deformation inferred from B(E2: 2-0)

Measured B(E2: 4-2) / B(E2: 2-0)
An Example

What can we aspire to in measuring B(E2)s in decay work?

By extrapolation:-

\[T_{1/2} (2 \rightarrow 0) = 5.5 \text{ ns} \]

\[T_{1/2} (4 \rightarrow 2) = 86 \text{ ps} \]
Electronic Timing

Direct electronic timing techniques for measuring the decay of sub-nanosecond states have been established for a long time:

HOWEVER

New bright scintillators, like LaBr$_3$ and CeBr$_3$, SrI$_2$ have both good energy resolution AND good timing.

Combined HpGe-Scintillator spectroscopy seems essential for decay studies.

Ge Gate: 89 keV
$\Delta t (\gamma_{213} - \gamma_{93})$
$\tau = 2068 (13)$ ps
Collective Vibrationsβ and γ

Vibrational bands are the keys to quantifying deformation: for perfect rigid rotors they should be high and low-collectivity. Are they different in very neutron-rich nuclei?

Do real β-bands exist anywhere?? (Paul Garrett would say “no”)

Where are the lowest $J^\pi=0^+$ states? {shape coexistence, pairing isomers}

Do γ-bands suggest nuclei are vibrational-like, or rigid??

β-decay is perfect for finding these band heads

\[\begin{align*}
0^+ & \quad 6^+ & \quad 4^+ \\
\beta\text{-band} & \quad & \gamma\text{-band} \\
\beta\text{-decay is perfect for finding these band heads} & \quad 4^+ & \quad 2^+ & \quad 0^+ \\
\end{align*} \]
How Octupole collective are neutron rich barium nuclei?

This has been an open question for 20 years.

Fission fragment spectroscopy and β-decay have found parity-doublet bands of states.

But there is almost NO data on real matrix elements, either quadrupole or octupole.

Leander at al PL 152B (1985)

\[^{146}\text{Ba} \]
Do neutron rich barium nuclei show X(5) symmetry?

Analytic model for nuclei at critical point of transition from spherical to deformed shapes

Provides good description of $N = 90$ isotones of Nd, Sm, and Gd

Key signatures involve low-spin, non-yrast states

Lighter Z, N=90 nuclei seem to have similar structure BUT essential states are not known

A Key Study:

Beta decay into $^{146,148}\text{Ce}$

Measure:-

Non-yrast state energies, mixing ratios, and branching ratios
Practicalities: Ground state half-lives

Where can CARIBU beams take us? Can we find new even-even nuclei..New Physics?

AFC and Structure Research at CARIBU Workshop 14-16th April 2011
Heavy Fragment Yields from 1Ci 252Cf source

Many new even-even isotopes to be identified, especially deep into the rare-earth domain.

Many Odd-odd to even-even decays have both low and high spin β-decays, enriching scope.

Can we expect anything new in “Nilsson” bandheads, or pairing correlations?????
Concepts
Spherical nuclei……..These should be the “simplest” cases of nuclear structure.

Where are the unperturbed “Single Particle: states?

Definitely fix Energies, Spins, Spectroscopic Factors.

What are the Residual Interactions?

Definitely identify multiplets.

What are the effective charges?

Precisely measure electromagnetic matrix elements.
132Sn in Decay

Has been suggested to be the “best” doubly closed shell model (DCSM) nucleus. BUT only one spin has really been firmly established….and the parent is not rigorous. This should be better.

132In yield predicted to be 1400 ions/sec
(i.e.) 200M decays/day:
10 angle bins with 50K photo-peak coincs.

132In
T_{1/2}=0.207(6)s

Jπ
2+
0+

(7−)

AFC and Structure Research at CARIBU Workshop 14-16th April 2011
Precision Angular Correlations

Example 152Eu decay to 152Sm
(McCutchan et al. 2010)

Gate on 244 keV, $4^+ \rightarrow 2^+$

$\delta = -3.5(2)$

$\delta = -3.6(3)$

4→4→2
1005-244 keV
Delta gives measure of E2/M1 mixing
Spectroscopy in the lig

CARIBU will produce 96Br at a rate of ~5 ions/sec, so resolving this issue should be quite straightforward.
The very deformed regime:-

CARIBU yields are high enough to reach beyond what is known in the highly deformed regime, where nuclei are thought to have $\beta_2 > 0.4$, well in excess of any nuclei beyond the p-shell.

Data is from prompt fission fragment spectroscopy. β-decay can add sidebands and matrix elements and reach MUCH further from stability.
Competitive Business

38 Lifetime measurements………
Mostly ~2 times faster than expected.
Conclusion

We will be entering “Terra Incognita” in the heaviest fragments from 252Cf fission … and with good yields.

It may be a desert …. It is right in the middle of the rare-earth rotors. But it a desert that we **THINK** we understand very well.

We **CAN** and **MUST** do better in precision spectroscopy near 132Sn

Neutron-rich Sr, Y, Zr nuclei have some of the largest ground state deformations known. Can we find new physics associated with large neutron excesses there? {**My best bet for structure surprises**}
Acknowledgement

Good Data Bases are essential for this fast-moving field