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Traps enable precision 3-decay spectroscopy
-

Traps have favorable properties: Neutrinos in § decay

 radioactive nuclei suspended in vacuum ﬁ e

« activity localized (<1mm?) in a well-defined geometry \ Neutrino

* nuclei nearly at rest eSCapes
detection!

Provide way to study difficult-to-measure particles through conservation of momentum
Measurement of nuclear recoil and 3 allow opportunity to reconstruct v energy/momentum event-by-event

Penning trap at ISOLDE/CERN

Experimenters around the world now use atom ) e
traps and ion traps to perform precise p-decay P B ?;—F iy 3
angular correlation studies to study wl_n_‘,_._h : —'Ed A
fundamental symmetries of electroweak R LA ‘ MOT at
interaction (V-A interaction for example) \ | Tt TRIUMF
*He' s | ion clou MCP i R
Recoiling daughter nucleus following § decay  buncnes _!E/a\_u o ER
emerges from trap without scattering and is j | mcp
available for study , ' MOT at LBNL ol
- direct detection of daughter ion NCP. S—
—~kinematic shifts Paul trap and
at GANIL N
Energies/shifts often only ~0.1 keV! trap B detecﬂor Otl’iis. =
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Beta-decay Paul Trap (BPT):

an ion trap for decay studies at ANL

RFQ electrodes —— \‘\) _

SIDE VIEW: !

Il

—— | P
7

inject ions

™~

trapped ions d

\@

lons confined using RF and DC
electric fields in 1-mm3 volume

* element independent

» ~90% capture efficiency

» <10 torr He buffer gas cooling
* ion energy <0.1 eV

 storage times > 30 sec

* LN, cooling of apparatus

Open-geometry trap structure
accommodates 4 sets of
radiation detectors

* large solid-angle coverage

» RF shielding for semiconductor
detectors

* silicon, scintillators, HPGe, MCP
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Beta-decay Paul Trap (BPT):
an ion trap for decay studies at ANL

RFQ elect

SIDE VIE

inject
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1st experiment: SLi B-decay angular correlation

Surround trapped-ion sample with position-sensitive detector system
to precisely reconstruct momentum vectors of all emitted particles
(including neutrino!)

8Li > %Be* + B + v Q=13 MeV

t,,=0.808 sec

DSSSD Plastic oL + Ol

XScintillator

8Be recoil (up to 12 keV) determined from o
break-up

* energy difference up to +400 keV
« angle deviation from 180° by up to 7°

o 4BLit
£
' o - momentum/energy of as (+ p direction)
/ \ measured from double-sided silicon-strip
detectors (DSSSD) - decay fully determined

Add plastic scintillator for 3 energy

measurement - decay overconstrained
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8Li B decay results
-

DSSDs used to observe the kinematic shifts — E_ resolution of 50 keV and
angular resolution of <2° - reveal nuclear recoil and v energy/momentum

o “ces Gamow-Teller decay - only axial vector or tensor contribute

o
oy 1

B
tensor T T |

a,

Counts
Counts
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Apply these precision approaches to 3-delayed neutron spectroscopy

f-delayed neutron emission Identify neutron emission from
_ large nuclear recoil
above Sn ﬁ 137
N 8 .
n \ 1 MeV n: ~10 keV recoil
v 1 MeV B: ~0.01 keV recoil
84——»0 N
136 @ Neutron emission
v Vw
137Xe

Accessible radioactive-decay half-lives are ~50 ms (transport and cooling times)
to >100 sec (limited by trap storage time) - nice overlap with p-decay half-lives of
delayed-neutron emitters
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Delayed Neutrons play a fundamental role in many basic and

applied sciences
-

Need better (or any) data for:

Astrophysics: how were the Nuclear Energy: how can Stockpile Stewardship: how
elements made? we best generate nuclear do fission fragments behave in
energy? different environments?
rprocess: P, of exotic nuclei P_and energy spectrum - reactor > delayed-neutron emission
define decay path back to stability ~ design and safety studies provides access to the nuclear
~ needed to compare the isotopic  « fast breeder reactors states populated in (n,y) reactions
abundances observed today to « modeling different fuel-cycle > Level densities and decay
nucleosynthesis mechanisms concepts, actinide mixes, and modes (n vs. y emission)
irradiation histories measurable — needed to improve

« modeling unexpected conditions  statistical model calculations

Nuclear Structure: how do the properties of nuclei evolve as they become more neutron rich?
How do we improve our nuclear models for all of these applications?
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Apply these precision approaches to delayed-neutron spectroscopy

Surround ion trap with plastic scintillator and MCP detectors —
the energy/momentum of the emitted neutron can be precisely
reconstructed from the time-of-flight of recoiling daughter ion

MCP ion

detector Many anticipated advantages to

recoil-ion detection

= excellent energy resolution
* reduced systematic effects
negligible backgrounds

onse|d

= high efficiency

chemistry-independent technique

/ Joje||iuios

Plastic
scintillator
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Demonstrate technique offline by studying well-characterized '3’ decay

demonstrate technique with smaller
fission-fragment set-up (1 mCi 2°2Cf
source in Area Il) and simpler detectors

3 Beam

purification

Eaferential pumping/
bunching of ions

Transfer
Lime

4 Decay RFQllilGuide
spectroscopy trap L ﬁ £

-

High Intensity
A Gas Catcher

. 1
Ge Detectors
Beta Paul Trap

Extraction/slowing of
fission fragments
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137] > 137Xe* + B+ v

MCP ion
detector
v
<l 136X e
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&&°Q n

AE-E plastic scintillator: Q; =3%
MCP ion detector: Qion= 3%
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137] delayed-neutron decay

Energy spectrum - time-of-flight spectrum

——e Neutron energy [
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K.-L. Kratz et al., Nucl. Phys. A317, 335 (1979)
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Data collected with *7I* beam of 30

B 137] 8 decay in the tra
45 sc/atter

6Xe ions following
B-delayed neutron
emission
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Determine P, an additional way:
by comparing fast, neutron-
emission ions to slower g—y
recoil ions
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From Demonstration to CARIBU

Proof-of-principle... ...at CARIBU

Increase both Qg, Q;,, to 10-20%

Detector array Q;, Q;,, each 3%:> with optimized detector array
- coinc. efficiency: x10-40

High-quality data can be obtained
with ion beams of ~1 ion/sec

-> can reach very exotic nuclei: r-
process, nuclear structure, etc.

CARIBU 1-Ci source: 4x10° ions/sec

lon beam 30 ions/sec
(for 137|, near mass peak) :> (for 137' at IOW'energy beamline)

High statistics for precision
measurements and systematic
checks: nuclear energy, stockpile
stewardship, etc.
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Existing data is limited (and often inconsistent)
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How lons are Trapped in a Paul (RFQ) Trap

Confinement in Axial Direction Confinement in Radial Direction

electrostatic
potential “Vicos(@h)

Vigeosiax) /1 Viiestt)o)
ions attracted to RF-field \ v/> y

minimum if stability
requirements are satisfied -V oos(@k)

Ion

Energy cooling

X

inhomogeneous RF electric field

ions cooled usin o Stability requirements:

helium buffer gas 2eV

9=—>5—5 ~0.5

mr 5o
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