Nuclear data and \textit{r}-process nucleosynthesis

Rebecca Surman
Union College

Workshop on Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure, and Astrophysics
Argonne National Laboratory
14 April 2011
rapid neutron capture nucleosynthesis

solar r-process abundances

as compiled by Anders and Grevesse (1988)
classic picture of the r process

from Seeger et al (1965)
r-process nucleosynthesis: open questions

Astrophysics

What is the astrophysical site (or sites) of the r process?

Some possibilities:

- **shocked surface layers of O-Ne-Mg cores** e.g., Wanajo et al (2003), Ning et al (2007)
- **gamma-ray bursts** e.g., Surman et al (2005)

Nuclear Physics

What are the nuclear properties of neutron-rich nuclei far from stability?

We need:

- masses
- beta decay rates
- neutron capture rates
- neutrino interaction rates
- fission probabilities and daughter product distributions
halo star observations of r-process nuclei

Main r process

\Rightarrow site within core-collapse supernovae?

Weak r process, LEPP

a supernova neutrino-driven wind r process?

Initial studies were very promising….

e.g., Meyer et al (1992), Woosley et al (1994)

…but it was found to be more difficult to produce the requisite conditions than first thought

The most recent calculations of proto-neutron star evolution predict no robustly neutron-rich outflows

Huedepohl et al (2010), Fischer et al (2010)

\[
p + \bar{\nu}_e \leftrightarrow n + e^+ \\
\]

\[
T_{\bar{\nu}_e} > T_{\nu_e} \\
\]

\[
n + \nu_e \leftrightarrow p + e^- \]
compact object mergers as an r-process site

Several environments within NS-NS or BH-NS mergers have been found to be attractive r-process sites

...but the timescale for mergers to develop is inconsistent with the data

Astrophysics

What is the astrophysical site (or sites) of the r process?

Some possibilities:

- shocked surface layers of O-Ne-Mg cores e.g., Wanajo et al (2003), Ning et al (2007)
- gamma-ray bursts e.g., Surman et al (2005)

Nuclear Physics

What are the nuclear properties of neutron-rich nuclei far from stability?

We need:

- masses
- beta decay rates
- neutron capture rates
- neutrino interaction rates
- fission probabilities and daughter product distributions
Astrophysics

What is the astrophysical site (or sites) of the r process?

Some possibilities:

- **shocked surface layers of O-Ne-Mg cores** e.g., Wanajo et al (2003), Ning et al (2007)
- **gamma-ray bursts** e.g., Surman et al (2005)

How does the r process proceed?

- (n,γ)-(γ,n) equilibrium, instantaneous freezeout (i.e., Kratz)
- no (n,γ)-(γ,n) equilibrium, cold r process (i.e., Wanajo)
Astrophysics

What is the astrophysical site (or sites) of the r process?

Some possibilities:

- **shocked surface layers of O-Ne-Mg cores** e.g., Wanajo et al (2003), Ning et al (2007)
- **gamma-ray bursts** e.g., Surman et al (2005)

Nuclear Physics

What are the nuclear properties of neutron-rich nuclei far from stability?

We need:

- masses
- beta decay rates
- neutron capture rates
- neutrino interaction rates
- fission probabilities and daughter product distributions
classic picture of the r process

$n, \gamma \rightleftharpoons (\gamma, n)$ equilibrium:

$$S_n(Z, A_{path}) \sim -kT \ln \left(\frac{n_n}{2} \left(\frac{2\pi \hbar^2}{m_n kT} \right)^{3/2} \right)$$

from Seeger et al (1965)
nuclear masses

FRDM
ETFSI
FRDM + experimental
steady beta flow: \[\lambda_\beta(Z, A_{path}) Y(Z, A_{path}) \approx \text{constant} \]
beta decay rates

Moller et al (1997)
+ experimental
individual beta decay rates

Weak r-process trajectories with one or two beta decay rates modified
beta-delayed neutron emission

[Graphs showing log Yn vs t (s) and log Y(A) vs A with and without annotations]
beta-delayed neutron emission and a cold r process
beta-delayed neutron emission

Cold r-process trajectory
neutron capture rates

⇒ can influence time until onset of freezeout
e.g., Goriely (1997, 8), Farouqi et al, Rauscher (2005)

⇒ can shape local details of the abundance distribution
e.g., Surman et al (1998), Surman & Engel (2001)

Surman & Engel (2001)
neutron capture rates

⇒ can influence time until onset of freezeout
e.g., Goriely (1997,8), Farouqi et al, Rauscher (2005)

⇒ can shape local details of the abundance distribution
e.g., Surman et al (1998), Surman & Engel (2001)

⇒ can influence the overall abundance pattern
e.g., Beun et al (2009), Surman et al (2009)

neutron capture rate/mass model variations

Surman, Beun, McLaughlin, and Hix, PRC, 79, 045809 (2009)

Neutron capture rate variation

Mass model variation
nonequilibrium effects of neutron capture rates

\[\sigma_{131}^{Cd} \times 10 \]

\[\sigma_{131}^{Sn} \times 100 \]

130 peak rare earth region + 195 peak

\[\langle ov \rangle_{131}^{Cd} \times 10 \]

\[\langle ov \rangle_{131}^{Sn} \times 100 \]

[Chemical Elements Chart]

Surman, Beun, McLaughlin, and Hix, PRC, 79, 045809 (2009)
Capture rates that affect a 5-20% change in the weak r-process abundance pattern for increases to the rate by a factor of 100.

Surman et al, in preparation

Capture rates that affect a 5-40% change in the global r-process abundance pattern for increases to the rate by a factor of:

- 10
- 50
- 100-1000

Surman, Beun, McLaughlin, and Hix, PRC, 79, 045809 (2009)
influential neutron capture rates: rare earth region

Mumpower et al, in preparation
fission probabilities and daughter products
fission probabilities and daughter products

How is a consistent pattern achieved?

\[
Y_e = \frac{1}{1 + n/p}
\]

\[
Y_e = 0.25 \\
Y_e = 0.26 \\
Y_e = 0.27
\]
fission cycling and a consistent r-process pattern

Beun, McLaughlin, Surman, & Hix, PRC 77, 035804 (2008)
We still don’t know where the r process takes place

⇒ but once astrophysical uncertainties are reduced, understanding the nuclear physics of neutron-rich nuclei will be crucial to make detailed comparisons between simulations and observations

We need:

- nuclear masses
- beta decay rates
- beta-delayed neutron emission probabilities
- neutron capture rates
- fission probabilities and daughter product distributions

As discussed by F. Montes

Particularly of nuclei on the beta-decay chains of the closed shell nuclei, and of nuclei in the rare earth region