100Mo(28Si,xnyp) with the LBNL Total Absorption Spectrometer (TAS)

Richard B. Firestone
Isotopes Project
Lawrence Berkeley National Laboratory

Workshop on "Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics"
April 14-16, 2011, Argonne National Laboratory
Prelude

The LBNL Total Absorption Spectrometer (TAS) was constructed by Mike Nitschke’s research group in 1989. The data presented here were briefly described in the 1989-1990 LBNL Nuclear Science Division Annual Report [1] and have languished in my computer for over 20 years.

In 1989 Mike proposed a national radioactive beam facility at the Workshop on Future Perspectives for Nuclei Far from Stability for the Long Range Plan for Nuclear Science at Argonne [2]. He turned his attention to radioactive beams until his death in 1995. TAS did one experiment in Berkeley and when the SuperHILAC closed it was moved to GSI where it was coupled their on-line mass separator [3].

This talk is dedicated to the memory of Mike Nitschke.
Mass separated source is collected on mylar tape (reel to reel tape drive) and transported between β detectors at TAS center. Isotopic identification is done with EC decay x-ray coincidences.
OASIS Mass Separator

Mass resolution ≈ 2000

Fig. 2. Schematic representation of OASIS showing its main components. The electrostatic mirror (20) deflects the beam vertically (shown turned 90°) to the next floor of the laboratory.

Measurement Summary

For the Isotopes $^{117-124}\text{Cs}$, $^{117-121}\text{Xe}$, and $^{121-124}\text{Ba}$ I have preserved the TAS data from our only experiment that measure

Complete I_β spectra, Q_{EC} values, and S_β strengths

For ^{124}Cs plug detector coincidence data survive and γ-ray strengths will be discussed.

Implications of these data to statistical models (Gross Theory of β-decay) will be discussed.

No other data from these experiments survives!
Even A Cs Isotopes

\[
\begin{align*}
1^{118}_{\text{Cs}} (J^e=2, 14 \text{ s}) &+ (J^e=7^- , 17 \text{ s}, Q_{\text{EC}}=9670) \\
1^{130}_{\text{Cs}} (J^e=2^+, 61 \text{ s}) &+ (J^e=7^- , 57 \text{ s}, Q_{\text{EC}}=8284) \\
1^{122}_{\text{Cs}} (E=140, J^e=8^-, 3.7 \text{ m}) & \quad 1^{122}_{\text{Cs}} (E=0, J^e=1^+, 21 \text{ s}, Q_{\text{EC}}=7220) \\
1^{124}_{\text{Cs}} (J^e=1^+, 30.8 \text{ s}) &+ (J^e=7^+, 6.3 \text{ s}, Q_{\text{EC}}=5929)
\end{align*}
\]

Note: These spectra have not been corrected for the TAS response function.
Odd-A Cs Isotopes

${}^{117}\text{Cs} (J^\pi=3/2^+, 6.5 \text{ s}) + (J^\pi=9/2^+, 8.4 \text{ s}) \, Q_{\text{EC}}=7740$

${}^{119}\text{Cs} (J^\pi=3/2^+, 30.4 \text{ s}) + 9/2^+, 43 \text{ s}) \, Q_{\text{EC}}=6489$

${}^{121}\text{Cs} (J^\pi=3/2^+, 155 \text{ s}) + (J^\pi=9/2^+, 122 \text{ s}) \, Q_{\text{EC}}=5372$

${}^{123}\text{Cs} (J^\pi=1/2^+, 5.87 \text{ m}) \, Q_{\text{EC}}=4265$
Q_{EC} Determination – Even A Cs

Q_{EC} can be determined by the endpoint of the γ-ray sum spectrum.

Here Q_{EC} has been estimated by visual inspection with the aide of French curve.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>AME (Audi)</th>
<th>TAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>118Cs(2)</td>
<td>0</td>
<td>9670(16)</td>
</tr>
<tr>
<td>118Cs(7$^-$)</td>
<td>100(60)</td>
<td>9570(100)</td>
</tr>
<tr>
<td>120Cs(2$^-$)</td>
<td>0</td>
<td>8284(15)</td>
</tr>
<tr>
<td>120Cs(7$^-$)</td>
<td>100(60)</td>
<td>8340(100)</td>
</tr>
<tr>
<td>122Cs(1$^+$)</td>
<td>0</td>
<td>7220(30)</td>
</tr>
<tr>
<td>122Cs(8$^-$)</td>
<td>140(30)</td>
<td>7020(100)</td>
</tr>
<tr>
<td>124Cs(1$^+$)</td>
<td>0</td>
<td>5929(9)</td>
</tr>
</tbody>
</table>

The 122Cs Q_{EC} value is consistent with the 8$^-$ isomer not the 1$^+$ GS decay. The excitation energy $E(8^-)=170\pm100$ keV from this work is consistent with $E(8^-)=140\pm30$ keV from AME.

TAS uncertainties are estimated
Q_{EC} Determination – Odd A Cs

Agreement between Audi and TAS data is excellent except for 117Cs where a large discrepancy exists.

Note the high energy resonance with $E=5.0$ MeV fed in 121Cs decay.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>AME (Audi)</th>
<th>TAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>117Cs(9/2+)</td>
<td>0</td>
<td>7740(60)</td>
</tr>
<tr>
<td>117Cs(3/2-)</td>
<td>150(80)</td>
<td></td>
</tr>
<tr>
<td>119Cs(9/2+)</td>
<td>0</td>
<td>6489(17)</td>
</tr>
<tr>
<td>119Cs(3/2+)</td>
<td>50(30)</td>
<td></td>
</tr>
<tr>
<td>121Cs(9/2+)</td>
<td>0</td>
<td>5372(18)</td>
</tr>
<tr>
<td>121Cs(3/2+)</td>
<td>68.5(3)</td>
<td></td>
</tr>
<tr>
<td>123Cs(1/2+)</td>
<td>0</td>
<td>4205(15)</td>
</tr>
</tbody>
</table>
Xe and Ba Q_{EC} values

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Q_{EC} (keV)</th>
<th>AME</th>
<th>Audi</th>
<th>TAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>117Xe (5/2$^+$)</td>
<td>6250(30)</td>
<td>6220(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118Xe (0+)</td>
<td>2892(22)</td>
<td>2880(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119Xe (5/2$^+$)</td>
<td>4970(30)</td>
<td>4930(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120Xe 0+</td>
<td>1617(21)</td>
<td>1610(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121Xe (5/2$^+$)</td>
<td>3814(15)</td>
<td>3820(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121Ba(5/2$^+$)</td>
<td>6360(140)</td>
<td>6160(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122Ba(0$^+$)</td>
<td>3530(40)</td>
<td>3530(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123Ba(5/2$^+$)</td>
<td>5389(17)</td>
<td>5340(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124Ba(0$^+$)</td>
<td>2542(15)</td>
<td>2650(100)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graphs showing Q_{EC} values for Xe and Ba isotopes](image.png)
Absolute EC+β+ Feedings

TAS measures relative electron capture feedings. To get total EC+β+ feedings

\[I(EC + \beta^+) _i = I(\gamma)_i (1 + \frac{f_\beta^+}{f_{EC}}) \]

\[\%EC + \beta^+_i = 100 \times \sum_i I(EC + \beta^+_i) \]

The spectrum should be corrected for the detector response function which is not known because the γ-ray spectrum is not known as a function of excitation energy.

Preliminary attempts to estimate this correction indicate that this only qualitatively affects the following results.
The β-strength $S_\beta(E)$ to levels above E_{crit} is proportional to the level density $\rho(E)$ with an average ft value derived from the tail of the proposed giant Gamow-Teller resonance near the IAS.

$S_\beta(E) = \frac{I_\beta(E)}{f(Q_\beta - E)t_{1/2}}$ (individual levels)

$S_\beta(E) = \frac{\rho(E)}{f(Q_\beta - E)t_{\text{Ave}}}$ (continuum levels)

This model is similar to the statistical models used in the analysis of neutron reactions.
Cs beta strength per 20 keV, $S_\beta = (%EC + \beta^+)/\left(f_{EC} \times f_{\beta^+}\right)^{1/2}$ increases exponentially up to ≈ 4 MeV as expected if it were proportional to level density but falls off dramatically at higher energies. This is inconsistent with the statistical model of beta decay.
Nuclear Structure in the β-strength of the Cs isotopes

Strong β-strength is expected for $\pi g_{9/2} \rightarrow \nu g_{7/2}$ spin-flip transition.

The Cs isotopes have $\beta_2 = 0.2$-0.3 so a fast spin-flip β-decay transition

\[\pi g_{9/2}^{[404]} \rightarrow \nu g_{7/2}^{[404]} \]

is expected near ≈ 4 MeV.

Configuration mixing spreads this β-strength of a wide excitation range.

Shell model effects appear to dominate these decays.
Nuclear structure in N=81 decay β-strength

For the N=81 145Gd, 147Dy, and 149Er decays the shell model effects are even more pronounced dominated by the $\pi h_{11/2} \rightarrow \nu h_{9/2}$ transition.

Alkhasov et al, NP A438, 482 (1985)
Gating on the NaI plug detector in coincidence with the TAS sum spectrum gives the γ-ray spectrum de-exciting the excitation region corresponding to the sum.

For 124Cs(1^+), $Q_{EC}=5929$ keV decay the strong population of the 5 MeV resonance gives a very different γ-ray spectrum than for other excitations.
Future Considerations

• The LBNL TAS spectrometer has returned to Berkeley. No reasonable offer will be refused.

• For use in the study of fission products the x-ray coincidences will not be useful for isotope identification.

 But, replacement of the plug detector with an external HPGe detector would allow the use of γ-rays for isotopic identification.

 And, the TAS γ-ray endpoint could the allow determination of both S_N, Q_{EC}, and the parent spin if the neutron emission probability above S_N can be modeled properly.

If I am invited back to Argonne in 20 years I’ll be happy to report on the research that I am currently doing.

Thank you for your attention