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I ntroduction

Modern data eval uation methodology draws upon basic principlesfrom statistics. It differsfrom earlier
ad hoc approaches which are completely subjective (e.g., eye guides to data) or are objective in alimited
sense(e.g., combinations of reported data by asimpleleast-sgquares procedurewithout regard to correl ations
in the data errors or a careful scrutiny of the dataincluded in the evaluation). In addition to utilizing more
rigorous mathematical procedures, modern eval uation methodol ogy involvestaking great careto insure that
the datawhich are being eval uated areequival ent towhat has been assumed in the eval uation model and that
thevaluesare consistent with respect to theuse of standardsand other fundamental physical parameters. This
short memorandum cannot substitute for more comprehensive treatments of the subj ect such ascan befound
inthelisted references. Theintent hereisto provide an overview of thetopic and toimpress upon the reader
that the evaluation of data of any sort is not a straightforward enterprise. Certainly evaluations cannot be
carried out automatically with computer codeswithout considerableintervention on the part of the evaluator.

There are two types of information (data). One is objective databased on experimental measurements
The other is subjective datawhich, in the case of basic nucl ear quantities, often emerge from nuclear model
calculations. It israre that thereis sufficient experimental information upon which to base acomprehensive
evaluation. Usually it is necessary to merge the complementary processes of measurement and modding in
order to generate such an evaluation. Furthermore, various nuclear quantities are not independent. For
example, an evaluated filefor a particular isotope or element, asit appearsin ENDF/B or any other national
or international file, consists of many interrel ated componerts (e.g., partid cross sections) corresponding to
various reaction channels. Partiad cross sections must add up to the total cross section. Unitarity of the S-
matrix appearing in theoretical calculations generallyinsuresthat thiswill be the casewhen these quantities
are derived from nuclear models. However, this will not happen for experimentally derived quantities.
Completely different experiments and techniques areinvolved in measuringindividual partial crosssections
(or combinations thereof), often leading to a rather messy state of afairs for the evaluator to sort out in
carrying out an evaluation. What is measured is rarely equivalent to what one seeks to obtain. The
relationship between what is measured (or calculated) and what is sought must be specified in order to carry
out a proper evaluation. The experimenter or model cal culator ought to be aware of this, but frequently this
is not the case so it is left to the evaluator to bridge the gap in under standing. Ideally an evaluator ought to
be well versed in all aspects of nuclear model calculdions, nuclear daa measurementsand the analysis of
measured data so that all thefeatures of theraw materialswhich must be employed in hiseval uation arewell
understood. Realisti cally thishappensrarely, so comprehensiveevauationssuch asthoseappearing in ENDF



are often the result of collaborations involving individuals with various complementary skills. Thisused to
be feasible in-house at many of theindividual laboraoriesin the U.S. dang nuclear daaresearch, sincein
earlier times the resources available were far more extensive than they are now. Due to staff reductions,
retirements, laboratory closings, etc., it isfar lesscommon now to find under oneroof all the necessary skills
needed to perform a comprehensive evaluation properly. Today inter-laboratory collaboration is essential.
Adequate funding is also required to support the personnel involved in this labor-intensive activity.

Modern Theory of Data Evaluation

In rather abstract terms, the process of data evaluation reduces to the following: Given a daa set D
(which may include both objective and subjective information), determine what isthe most likely (best) set
of values for the evaluated quantities represented by a vector p = (p,,p, - » Pws -+ » Px)- The methodology
described hereisbased on the application of threefundamental principles: i) Bayes Theorem, ii) thePrinciple
of Maximum Entropy, iii) the Generdized L east-squares M ethod. Theseprinciplesare somewhat interrel ated,
as discussed in the references below. The following formalism is afully probabilistic one in the sense that
it offersaprescriptionfor generating aprobability distribution function p(p) that embodiesall theinformation
available concerning the parametersp.

Bayes Theorem and the Principle of Maximum Entropy

In the present context, Bayes Theorem assumes the form

p(PP ) =CL (O [p)p(p), D

where p,(p) is the a priori probability distribution that describes the knowledge of p before any new
information is acquired, D represents the newly obtained information, L (D |p) isthe likelihood that the
parametersp could haveledtothedatasetD , p(p[D ) isthea posteriori probability distribution for p (after
the new information became available) and C is a positive constant which insures that the a posteriori
distribution isnormalized, i.e., that the requirement p(p|D )dp = 1lissatisfied when integration is carried
out over the entire space of physically ressonable parameters p.

Suppose that the experiments and/or calculaions which geneated the dataset D  involve acollection
of J physical quentities denoted cdlectively asy = (y,.Y, -.. .Y, - ,¥y). The generation of data entails
uncertainties, therefore let V, represent the covariance matrix (error matrix) for these data Thus, D is
represented by the values{y,V,} . It is assumedthat given parameter set p it is possible to calculate a set of
Jquantitiesf(p) = [f,(p).f,(p), ... .f;(p), ... .f,(p)] which are equivalent to the data valuesy (one-to-one). The
Principle of Maximum Entropy enables a relatively ssimple expression for L (D [p) to be written down
directly, namely,

L © Ip) exp{(-L2)ly-f(P)I"V, [y-f(p)]}, (2)

where "*" signifies matrix transposition and "™ signifies matrix inversion. V, is required to be positive
definite. If thea priori knowledgeincludesaparameter set p, and corresponding positive definite covariance
matrix V, then the Principles of Maximum Entropy states that



pLp)  exp{(-12)[p-p]'V, 1p-p}, 3
which is amultivariate normal distribution.

The Generdlized L east-squares M ethod

TheGeneralized Least-squaresM ethod (GL SM) followsfrom imposing amaximum-likelihood condition
on Eq. (1), namely, that the GL SM solution for p isthe onefor which thea posteriori probability distribution
achievesitsmaximum val ue. Because of the nature of the exponential function, combining Egs. (1)-(3) leads
to the requirement

[y-F()I*V, Ty-f(P)] + [P-p "V p-pd = minimum, (4)

provided that the new and prior knowledge are essentially independent (a point which an evaluator must
adways keep in mind when oollecting input data and prior information for a GLSM evauation). If the
relationship between p and f(p) is non-linear, in genera it can be quite difficult to find a solution which
satisfies EQ. (4). There are ways to do this based on numerical integration involving the probability
distribution but thiswill not be discussed here. However, if themodel islinear, i.e., if f(p) = Ap, thenthea
posteriori probability distributionp(pD ) isamultivariatenormal distribution. Thematrix A isoftenreferred
to asthedesign (or sensitivity) matrix. A completedescription of therel ationship between the acquired data
and the parameters to be derived from the evaluation process is contained in A. Even if the relationship
between p and f(p) is non-linear it may still be possible to linearize the problem via the approximate
relationship

f(p) - f(p) A(p-py, 5)

where the elements of matrix A are given by the expression g, = [ f/ p] evaluated at p = p,. The
approximation in Eqg. (5) isvalid as long as the solution p does not differ too much from the prior estimate
p.. In practice, most evaluations rely on being able to use this approximation, and therefore experienced
evaluatorstry to set up an evaluation process so that this condition is reasonably well satisfied.

For thelinear (or "linearized") model, the solution to Eq. (4) iscontained in the following four equations
which form the basis of data evaluaion by GLSM:

P =pa+ VA Q) Iy-f(p)], (6)
Q=AVA", (7)

V,=V,- VA (Q+V,)'AV,, (8)

( Dmin = [y-FEI"(Q+V,) ' [y-f(pJ)]. (9)

Two featuresof thissolution areworth pointing out here. First, the solutionyieldsnot only aparameter vector
p (the evaluation itself) but also a corresponding covariance matrix V , representing the uncertaintiesin the
evaluated quantities. Second, thereisastatistical test provided gratisintheform of thequantity ( %),;,. This



guantity obeys a chi-squared distribution with J degrees of freedom. A comparison with standard tables of
the chi-square distribution enablesthe eval uator to determinewhether theinput dataand/or eval uation model
are consistent. If inconsistencies are found then the input information and evaluation model must be
examined to try to discover the source of the problem.

Practical Considerationsin Data Evaluation

The procedure sketched out aboveisdeceptively simple. In order to emphasizethispaintitisworthwhile
examining each of the quantities appearing in Egs. (6)-(9).

p (parameters to be eval uated):

It may seem obviouswhat it isthat one wishes to evaluate but thisis not always the case. For example,
if an evaluated reaction cross sectionisdesired vs. incident energy, thisisrealy acontinuousfunction. How
should it be represented? One approach is to give "point" cross sections, namely, a set of energies and
corresponding cross section values such that one can reconstruct the desired curve through interpolation.
Another approach is to give group cross sections, namely, interval-average cross sections for well-defined
energy intervals. If the desired quantity is a derived value, e.g., a Maxwellian-spectrum-average capture
neutron capture cross section then this needs to be wdl defined before the evaluation process begins.

p,and V, (prior parameter values and their uncertainties):

In the GLSM method it is necessary to start from somewhere, even if it is only a guess. The prior
parameters p, might be values from an earlier evaluation (in which case thenew evaluation should include
only information not reflected in the earlier evaluation) or they may result from model calculations which
are to be "adjusted” by the inclusion of new experimental data viathe GLSM method (data merging). The
associated covariance matrix V, needsto be generated in aconsistent way (e.g., it must be positive definite).
Thisis not easy to do if the prior values are merely estimates, or if they are based on calculations using
models that are very sensitive to fundamental nuclear interaction constants and that are not well validated
to begin with. It seems rather intimidating to be forced to provide something as input to the codes which
implement GLSM in the face of such sketchy knowledge. However, it should be comforting to know that
assumed prior parameters with large errors generally carry very little weight in the GLSM process, and the
solution tends to be heavily dominated by the new information if that is both extensive and relatively
accurate. Still, this happy state of affairs can be thwarted if the correlations existing in the covariance
matricesV, and V, are too strong, posing yet another potential pitfall for the wary evaluator!

y and V, (new data and their uncertainties):

The most important thing to know here is what the data actually represent. Are the energies well
established? What was the neutron spectrum in which they were measured? What standardswere used? Are
the various data collected from theliterat ure truly independent or arethere common sources of uncertai nty?
These and many other questions force the evaluator to examine the data and their documentation very
carefully, and it is often necessary to adjust these datafor changes in standards, to transform to new energy
grid points, etc. This process of adjusting dataprior to their evduation isthe most time consuming part of
evaluation work, and often it is the most arbitrary one since poor documentation of published data is a



notorious problem. Only when the input dataare properly prepared can one hope to get reasonabl e results
from an evaluation, regardless of the procedure used. Thissmply cannot be done by a"machine approach”
without the aid of human scrutiny.

f(p) or A (the model which relates the data to the evaluated parameters):

Thisisatest of the evaluator's skill. The elements of matrix A can be generated easily enough from the
selected model, either analytically or vianumerical procedures. What istaxing is knowing just how agiven
piece of datarelates to the parametersto be eval uated when the datain question are either undocumented or
relatively poorly documented. Often it is necessary to reject certain data points becausecrucia information
islacking. For example, if across-section publishedin 1957 indicates an energy " 14 MeV" could thismean
13.9MeV or 14.1 MeV?If thephysical quantity isknown to vary rapidly with energy thisisacrucial matter.
Often the evaluator has to look at the original paper and, from a description of the experimental setup, try
to answer the question. Early works frequently fail to indicate which standards were used or to give actual
values for these standards when they are mentioned. Based on the date of the work and clues in the
documentation it may be possiblefor anevaluator to estimate what wasusedintheoriginal dataanalysiswith
reasonablereliability. Frequently that isnot possible. If careisnot taken to relate what was measured to what
issought then the eval uation process reducesto an exercisenot unlike that of comparing apples and oranges.

( ?),., parameter (test for confidence in the GLSM evaluation):

If all the data are reasonably consistent with the assumed uncertanties, and if the evaluation model is
consistent withtheinput data, then (' ?),;, J(number of degrees of freedom) should result from theanalysis
embodied in Egs. (6)-(9). If ( ?),,, >> J, then there are inconsistencies which need to be resolved by the
evaluator. Thismay ental looking at all thedata setsto seeif they are discrepant or if the assumed errorsare
too small. It may also entail looking at the evaluation model which relates the data and parametersto seeiif
it is somehow faulty. In any case, the evaluator must do something! An evaluation with alow degree of
confidence (large chi-square value) is simply unacceptable.

Finaly, it should be mentioned that computational round-off errorsassociated with the ad ustment of data
or with the GLSM evaluation process (which often involves the inversion of large matrices) can lead to
inferior evaluated results. Evaluators need to insure that thar analyses are carried out using adequate
numerical precision.

Summary

Data evaluation, like making good wine or cheese, involves not only good quality ingredients but also
dependscritically onthe"art of theevaluator”. Combing theliterature and experimental datafilesfor theraw
materials needed in evaluaions has been likened to archaeology. A good evaluator must be a very patient
individual. Modern data eval uation concepts, as embodied in GLSM, provide an unbiased approach to the
merging of all types of data which become known to an evaluator, once it has been assembled, examined
critically and put into a unified format for andysis. Thereare various codes that can do the actud GLSM
calculations, depending upon the nature of the data (e.g., SAMMY, GLUCS, GMA, GLSMOD, UNFOLD,
BAYES, etc.). The particular software which isused is generally of lessimportance than understanding the
nature of the dataemployed and verifying i tsfidelity.
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