NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-2
Prompt Air-Scattering Corrections
for a Fast-Neutron Fission Detector: En \leq 5 \text{ MeV}

by

Donald L. Smith

September 1973

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-2

PROMPT AIR-SCATTERING CORRECTIONS FOR A
FAST-NEUTRON FISSION DETECTOR: \(E_n \leq 5 \text{ MeV} \)

by

Donald L. Smith

September 1973

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa
Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame
The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.
ANL/NIM-2

PROMPT AIR-SCATTERING CORRECTIONS FOR A
FAST-NEUTRON FISSION DETECTOR: $E_n \leq 5 \text{ MeV}$

by

Donald L. Smith

September 1973

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
U.S.A.
NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in the field of microscopic nuclear data. The primary objective is the dissemination of information in the comprehensive form required for nuclear technology applications. This Series is devoted to: a) Measured microscopic nuclear parameters, b) Experimental techniques and facilities employed in data measurements, c) The analysis, correlation and interpretation of nuclear data, and d) The evaluation of nuclear data. Contributions to this Series are reviewed to assure a high technical excellence and, unless otherwise stated, the contents can be formally referenced. This Series does not surplant formal journal publication but it does provide the more extensive information required for technological applications (e.g. tabulated numerical data) in a timely manner.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>II. PHYSICAL PROPERTIES OF AIR.</td>
<td>5</td>
</tr>
<tr>
<td>III. SIMPLE ANALYTIC FORMULATION</td>
<td>7</td>
</tr>
<tr>
<td>IV. ISOTROPIC SINGLE ELASTIC - SCATTERING FORMULATION</td>
<td>10</td>
</tr>
<tr>
<td>V. DETAILED SINGLE-SCATTERING FORMULATION</td>
<td>15</td>
</tr>
<tr>
<td>VI. CONCLUSIONS</td>
<td>20</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX I: Listing of FORTRAN IV Code-AIRSC1.</td>
<td>63</td>
</tr>
<tr>
<td>APPENDIX II: Listing of FORTRAN IV Code-AIRSC2.</td>
<td>69</td>
</tr>
</tbody>
</table>
PROMPT AIR-SCATTERING CORRECTIONS FOR A FAST-NEUTRON FISSION DETECTOR: $E_n \leq 5$ MeV

by

Donald L. Smith

ABSTRACT

Neutrons which have scattered many times in surrounding air and in laboratory objects arrive randomly in time at a detector and can be discriminated by time-of-flight techniques. Neutrons which have scattered only a few times in air reach the detector soon after the primary neutron burst and cannot be distinguished from the latter by time conditions. Most of the prompt air-scattered neutrons have undergone only one elastic collision and it has been shown that the ratio of these singly-scattered to primary neutrons increases linearly with distance from a point source. The energy, time and angular distributions of neutrons which scatter once in surrounding air before reaching a fission detector have been calculated for $E_n = 0.05 - 5$ MeV using published cross sections. Data corrections for prompt air-scattered neutrons are generally small but not necessarily negligible in high-precision measurements. For example, it has been calculated that this effect leads to a correction of $\approx 0.2 - 0.3\%$ in a measurement at $E_n = 1.5$ MeV of the U-238 to U-235 fission cross section ratio if the back-to-back uranium deposits in a double fission detector are situated 10 cm from the neutron source. This correction is significant since $\approx 1\%$ accuracy is currently sought in fission cross section ratio measurements.
I. INTRODUCTION

We shall consider a predominantly fast-neutron field whose source is for practical purposes a point (e.g. bombardment of a lithium target with a focused proton beam from an accelerator). The neutron field at an arbitrarily distant observation point is composed of primary neutrons and of neutrons which have scattered in surrounding air and in laboratory objects. The response of a fission detector to these neutrons depends upon the isotopic constituency of the fissionable material in the detector as well as on the characteristics of the field.

Air is a rather sparse medium and the ratio of air-scattered to primary flux is generally small unless the observation point is relatively far from the source. One of the best ways to minimize the influence of air scattering in an experiment is to choose an irradiation position which is as close to the source as possible. Another approach which may be employed to minimize external scattering problems is to irradiate samples and a monitor in the same geometry. External scattering corrections tend to cancel for these relative measurements unless the cross sections involved vary considerably with energy.

Multiple scattering eventually generates a thermal neutron background with weak spatial variation in the vicinity of the source. Thermal neutrons can be extremely troublesome for a fission detector containing a deposit enriched in an isotope with a large thermal fission cross section. Fortunately, time-of-flight techniques can be utilized to reject thermal background in many fast-neutron experiments. Otherwise, it is necessary to place the fission detector close enough to the source so that the thermal correction is manageable small. Hydrogenous laboratory materials such as water, paraffin and concrete are very effective in thermalizing neutrons. Surrounding air and non-hydrogenous laboratory materials also contribute to thermalization. Since experimental techniques exist for minimizing
the effects of thermal neutrons in most fast-neutron experiments, this topic will not be considered further in this paper.

Neutrons which scatter only a few times in air in the vicinity of the source and lose only part of their primary energy can produce fissions and hence cannot be distinguished from primary-neutron fissions by time-of-flight. One could minimize this problem by placing the detector very close to the source, but this is not always feasible. It is the influence of these prompt air-scattered neutrons which has been investigated in the present work. The term "air-scattered neutrons" as used in the remainder of this report implies prompt air-scattered neutrons.

For a monoenergetic point neutron source, define:

\((r, \theta) = \) polar coordinates of the observation point with the source situated at the origin. Air scattering exhibits no azimuthal dependence in a homogeneous medium.

\[\Sigma_{T,\text{AIR}} = \text{macroscopic neutron total cross section for air.} \]

\[f_0(\theta)/r^2 = \text{vacuum flux (neutrons/cm}^2/\text{sec).} \]

\[f(r, \theta)/r^2 = \text{true flux at the observation point (neutrons/cm}^2/\text{sec).} \]

\[F(r, \theta) = \text{relative intensity of air-scattered and direct neutrons at the observation point.} \]

Then

\[f(r, \theta) = f_0(\theta) \left[1 + F(r, \theta) \right] \exp(-r\Sigma_{T,\text{AIR}}). \] \hspace{1cm} (1)

Eq. (1) provides no information about the energies, arrival times and angles of incidence for scattered neutrons reaching the detector. These factors along with properties of the detector determine the relationship between the observed detector response and the neutron field which is to be measured.

II. PHYSICAL PROPERTIES OF AIR

For the present analysis, dry air is represented by a mixture of nitrogen (79.1\%) and oxygen (20.9\%) with a total density of 1.205 x
10^{-3} grams per cm3 under normal conditions (temperature = 20°C and pressure = 76 cm Hg) [1]. The only isotopes of nitrogen and oxygen which are significant are N-14 (99.63% of natural nitrogen and O-16 (99.759% of natural oxygen) [2]. The atomic densities of these isotopes are 4.034×10^{19} atoms of N-14 and 1.066×10^{19} atoms of O-16 per cm3 of air. The concentrations of the rare gases (argon, etc.) are too small to significantly affect the neutron scattering properties of air. The H$_2$O vapor content of air is variable, but amounts to 1.7118×10^{-25} grams per cm3 of air for 20°C at the saturation level [1]. This corresponds to 1.145×10^{18} atoms of hydrogen and 5.724×10^{17} atoms of oxygen per cm3 of air. The presence of hydrogen in H$_2$O vapor is likely to have a noticeable effect on the thermalization of neutrons emitted from the source. On the other hand, the H$_2$O vapor is unlikely to have much influence on the fast-neutron scattering properties of air (except possibly near the oxygen resonance at 0.44 MeV) and therefore, H$_2$O vapor will be ignored in the present work.

For $E_n \leq 5$ MeV, neutron scattering by N-14 proceeds predominately via elastic scattering with a small contribution from inelastic scattering through the 3.945 MeV excited state. All scattering from O-16 is elastic for $E_n < 6.13$ MeV. Total, elastic scattering and inelastic scattering cross sections from an evaluation by J. H. Ray et al. [3] have been used in the present work. Selected cross section values from this reference are listed in Table I (nitrogen) and Table II (oxygen).

Inelastic scattering from nitrogen is assumed to be isotropic in the laboratory. Tables of Legendre coefficients for nitrogen and oxygen elastic scattering angular distributions are given as a function of neutron energy in Ref. 3. These distributions refer to the center-of-mass system and are presented in the form:

$$
\frac{d\sigma_n}{d\Omega} \left|_{CM} = \left(\frac{\sigma_n}{4\pi}\right) \left[1 + \sum_{k=1}^{n} \frac{(2k+1)}{k} P_k(\cos\theta_{CM}) \right] \right.
$$

(2)
where $P_k (\cos \theta_{QM})$ is a Legendre polynomial of order k. The center-of-mass system angular distributions from Ref. 3 were transformed to the laboratory system for use in the present work. Sets of coefficients (w_k) were generated where

$$\frac{d\sigma_E}{d\Omega} \bigg|_{\text{LAB}} = \left(\frac{\sigma_E}{4\pi} \right) \left[1 + \sum_{k=1}^{m} w_k P_k (\cos \theta_{LAB}) \right].$$ \hspace{1cm} (3)

The shapes of the laboratory elastic-scattering angular distributions were reproduced quite well at all energies by using fifth-order expansions ($m=5$). Sets of coefficients (w_k) for various neutron energies are given in Table III (nitrogen) and Table IV (oxygen). Plots of the elastic-scattering angular distributions for selected neutron energies appear in Fig. 1 (nitrogen) and Fig. 2 (oxygen).

III. SIMPLE ANALYTIC FORMULATION

The analysis in this report assumes a detector which is essentially a parallel-plate ionization chamber with a thin film of fissionable material in the form of a circular disk deposited on one of the plates [4]. Fig. 3 is a schematic diagram which shows the relationship of the fissionable deposit and the point neutron source and defines several geometrical parameters required for calculations. Scattering by other components of the fission chamber constitutes a separate problem which will not be considered here.

It is not hard to derive an expression for the relative intensity of the singly-scattered neutrons to the primary neutrons at the center of the deposit [coordinates $(0,0,0)$ in Fig. 3] if the following approximations are made:

a. Emission from the source is monoenergetic and isotropic.

b. Energy loss by neutrons in elastic scattering from nitrogen or oxygen is ignored.

c. Neutron scattering by nitrogen or oxygen is isotropic in the laboratory.

d. Flux attenuation along the propagation paths is neglected.
Let

$$F_0 = \text{relative intensity of singly-scattered neutrons to the primary neutrons as computed by the method described in this section.}$$

Then

$$F_0 = (\Sigma_{E,\text{AIR}} d^2/4\pi) \int_{\text{ALL SPACE}} (1/d_2) \delta d_1 \delta S_1$$

(4)

where

$$\Sigma_{E,\text{AIR}} = \text{macroscopic neutron elastic scattering cross section for air}$$

and values for d_1 and d_2 as defined in Fig. 3 are computed for $r_F = 0$ ($\theta_{S_0} = 0$).

Azimuthal symmetry and the law of cosines may be applied to obtain the formulas

$$d_2^2 = d^2 + d_1^2 - 2d_1 d \cos \theta_{S_1}$$

(5)

and

$$F_0 = (\Sigma_{E,\text{AIR}} d^2/2) \int_0^{\delta d_1} \int_0^{\delta \theta_{S_1}} \int_0^{\delta \theta_{S_1}} \sin \theta_{S_1} x \times$$

$$x (d^2 + d_1^2 - 2d_1 d \cos \theta_{S_1})^{-1}.$$ (6)

A change of variables and partial integration yields the expression

$$F_0 = (\Sigma_{E,\text{AIR}} d^2/2) \int_0^{\infty} \frac{\delta X}{X} \ln \left(\frac{1 + X}{1 - X}\right).$$

(7)

From integral tables in Ref. 1 one obtains

$$\int_0^{\infty} \frac{\delta X}{X} \ln \left(\frac{1 + X}{1 - X}\right) = 2 \int_0^{1} \frac{\delta X}{X} \ln \left(\frac{1 + X}{1 - X}\right) = \frac{\pi^2}{2}$$

(8)

and consequently

$$F_0 = (\pi^2 \Sigma_{E,\text{AIR}} d/4).$$

(9)

The mean free path for elastic scattering λ_E is defined to be the reciprocal of the macroscopic elastic scattering cross section $\Sigma_{E,\text{AIR}}$, therefore

$$F_0 \approx 2.47 (d/\lambda_E).$$

(10)
The interpretation of Eq. (8) is that half of the air-scattered neutrons originate from within a sphere of radius \(d\) centered at the neutron source while the rest of the scattered neutrons come from all space exterior to this sphere. The mean free path for elastic scattering in air can be computed from the formula

\[
\lambda_{E} = \left[(4.034 \times 10^{-5}) \sigma_{E,N} + (1.066 \times 10^{-5}) \sigma_{I,O} \right]^{-1}
\]

(11)

using cross section values in barns from Tables I and II (see Section II). Values of \(\lambda_{E}\) computed from Eq. (11) appear in Table V. The solid curve in Fig. 4 is a plot of \(F_{0}\) computed with Eq. (10) and values of \(\lambda_{E}\) from Table V for \(d = 5\) cm. Notice the effect of the oxygen scattering resonance at \(E_{n} = 0.44\) MeV.

Only singly-scattered neutrons were considered in the preceding analysis. A rudimentary argument for neglecting higher-order scattering will now be presented. Let us assume that time-of-flight conditions preclude detection of any neutron which has propagated along a path (not necessarily in a straight line) of length exceeding \(L\). By definition of the mean free path \(\lambda_{E}\), the average number of collisions experienced by a neutron along a path of length \(L\) is \(L/\lambda_{E}\). The probability of the neutron experiencing exactly \(N\) collisions is given by the Poisson distribution

\[
P_{N} = \frac{N^{N}}{N!} e^{-L/\lambda_{E}}
\]

(12)

From Eq. (12) it is seen that the probability of zero collisions \(P_{0}\) is \(e^{-L/\lambda_{E}}\) which is exactly what one would expect since \(e^{-L/\lambda_{E}}\) is the attenuation coefficient. The probability of experiencing any sort of collision (without specifying the order) is just \((1-e^{-L/\lambda_{E}})\). The probability \(P_{1}\) of a single collision is \((L/\lambda_{E}) e^{-L/\lambda_{E}}\) and, in general, the ratio of \(P_{N}\) to \(P_{N-1}\) is simply \((L/N\lambda_{E})\). From Table V it is seen that \(\lambda_{E} = 6854\) cm for \(E_{n} = 1\) MeV. On the other hand, a reasonable time limitation imposed by time-of-flight discrimination would be \(\sim 20\) nanoseconds. This implies \(L = 277\) cm and a corresponding ratio of \(P_{2}\) to \(P_{1}\) of \(\sim 0.02\). Higher orders of scattering are
even more negligible.

Langsdorf has shown by means of an analysis resembling that which led to Eq. (9) that the ratio of doubly air-scattered neutrons to primary neutrons can be approximated by a relatively simple formula for small values of \(d/\lambda_E \) [5]. Application of this formula for \(E_n = 1 \) MeV and \(d = 5 \) cm yields a ratio of \(\sim 10^{-5} \) for doubly scattered to primary neutrons and \(\sim 0.006 \) for the ratio of doubly scattered to singly scattered neutrons. This result indicates that the rudimentary approach discussed in the preceding paragraph may overestimate the importance of higher-order scattering. Consequently, only single scattering will be considered for the remainder of this report.

IV. ISOTROPIC SINGLE ELASTIC-SCATTERING FORMULATION

The relative intensity of scattered and primary neutrons can be estimated easily from Eqs. (10) and (11). The only additional piece of information which the formulation in Section III provides is that half of the air-scattered flux originates from within a distance \(d \) of the source. A different approach is required to study the effects of finite detector size and to determine the incidence-angle and arrival-time distributions for air-scattered neutrons. These additional aspects will be investigated in the present section within the framework of the approximations stated in Section III.

The appropriate geometry for the following analysis is shown in Fig. 3. It is advantageous to define a set of cylindrical coordinates \((r_A, \phi_A, Z_A)\) with origin \((0,0,0)\) at the center of the uranium deposit. The point neutron source is situated on the axis at coordinates \((0,0,d)\). The uranium deposit is taken to be a very thin circular disk with radius \(R_{DISH} \). Let

\[
F_1 = \text{relative number of air-scattered neutrons to primary neutrons incident upon the deposit as computed by the method described in this section.}
\]

then
\[
F_1 = \left(\varepsilon_{E,\text{AIR}}/4\pi \right) \frac{\left[\int_0^{R_{\text{DISK}}} \delta r_F \int_0^{Z_{A,\text{MAX}}} \delta Z_A \int_0^{2\pi} \delta \phi_A \mathcal{F}(d,r_F,r_A,Z_A,\phi_A) \right]}{\left[\int_0^{R_{\text{DISK}}} \delta r_F \mathcal{F}(d,r_F) \right]}
\]

(13)

where

\[
\mathcal{F}(d,r_F) = r_F/(r_F^2 + d^2)
\]

(14)

\[
\mathcal{F}(d,r_F,r_A,Z_A,\phi_A) = (r_A r_F/d_1 d_2)^2
\]

(15)

\[
d_1^2 = x_A^2 + y_A^2 + (z_A - d)^2
\]

(16)

\[
d_2^2 = (x_A - r_F)^2 + y_A^2 + z_A^2
\]

(17)

The indicated integration of Eq. (13) extends over the surface of the disk and over all air space. Since most of the air-scattered neutrons come from the vicinity of the source, it is reasonable to set limits on the region of air space included in the evaluation of \(F_1\). Thus

\[
F_1 \approx \left(\varepsilon_{E,\text{AIR}}/4\pi \right) \frac{\left[\int_0^{R_{A,\text{MAX}}} \int_0^{Z_{A,\text{MAX}}} \int_0^{2\pi} \delta \phi_A \mathcal{F}(d,r_F,r_A,Z_A,\phi_A) \right]}{\left[\int_0^{R_{\text{DISK}}} \delta r_F \mathcal{F}(d,r_F) \right]}
\]

(18)

where \(R_{A,\text{MAX}}\) and \(Z_{A,\text{MAX}}\) are limits on the coordinates \(r_A\) and \(Z_A\) which define a pillbox surrounding the uranium deposit. The integrals appearing in Eq. (18) are evaluated by a Monte-Carlo technique. The expression

\[
F_1 \approx \varepsilon_{E,\text{AIR}} R_{A,\text{MAX}} Z_{A,\text{MAX}} \frac{\sum_{j=1}^{N_{\text{HIST}}} \left(\varepsilon_{\text{HIST}} \mathcal{F} \right)/N}{\sum_{j=1}^{M_{\text{HIST}}} \left(\varepsilon_{\text{HIST}} \mathcal{F} \right)/M}
\]

(19)

is an approximation to Eq. (18) which improves in accuracy with increased numbers \(N_{\text{HIST}}\) and \(M_{\text{HIST}}\) of sampling histories. \(M_{\text{HIST}}\) can
be considerably smaller than N_{HIST}. Choice of values for M_{HIST} and N_{HIST} is a matter of compromise between computational time and statistical stability. Random values for r_ϕ, r_A, Z_A and ϕ_A were computed for each history from the equations

$$r_\phi = R_{\text{DISK}} \eta_\phi \quad (0 < \eta_\phi \leq 1)$$

$$r_{\text{A}} = R_{A,\text{MAX}} \eta_R \quad (0 < \eta_R \leq 1)$$

$$Z_A = -Z_{A,\text{MAX}} + 2Z_{A,\text{MAX}} \eta_Z \quad (0 < \eta_Z \leq 1)$$

$$\phi_A = 2\pi \eta_\phi \quad (0 < \eta_\phi \leq 1)$$

where η_ϕ, η_R, η_Z and η_ϕ are random numbers.

An advantage of this method is that it permits one to easily calculate distributions and history averages of other parameters using the same weighting factors \mathcal{F}_j and \mathcal{G}_j from Eqs. (14) and (15). The arrival-time distribution for air-scattered neutrons is of interest for time-of-flight applications because one wishes to know to what extent the air-scattered neutrons straggle with respect to the primary neutrons and thereby produce a "late-arrival" tail on the time peak generated by a pulsed neutron source. The minimum flight time from the neutron source to the uranium disk is given by

$$T_{\text{MIN}} = \frac{d}{v_n}$$

where

$$v_n = \text{velocity of the neutrons}$$

and this corresponds to propagation along the axis. The longest flight time for primary neutrons is given by

$$T_{\text{MAX}} = \left(d^2 + R_{\text{DISK}}^2 \right)^{1/2}/v_n$$

and $(T_{\text{MAX}} - T_{\text{MIN}})$ is usually smaller than the experimental time resolution. The flight time for an air-scattered neutron (with no energy loss) is given by

$$T = (d_1 + d_2)/v_n$$
which could be significant if \((d_1 + d_2) \gg d\). During the process of evaluating the numerator of Eq. (19) one can compute flight times \(T_j\), each weighted by the appropriate value \(\xi_j\), and thereby generate a time distribution. In the present work, the time interval \((0, T_{RANG})\) was divided into \(N_{TIME}\) equal time intervals. If the following inequality

\[[(k-1)T_{RANG}/N_{TIME}] \leq (T_j - T_{MIN}) \leq [(k+1)T_{RANG}/N_{TIME}]\]

(27)

is satisfied for the \(j\)th history, then \(\xi_j\) is added to the weight factor \(\xi_k\) for the \(k\)th "bin" of the discrete time distribution function. The collection of values \(\{\xi_k\}\) obtained from following \(N_{HIST}\) histories defines the unnormalized time distribution function. Contributions from histories for which \((T_j - T_{MIN})\) exceed \(T_{RANG}\) are recorded in an "overflow" bin. Use of such an "overflow" bin permits one to calculate how many events will be lost as a result of air scattering when a "window" is placed on the time peak during a measurement.

The angle of incidence \(\theta_I\) for neutrons which scatter from air in the vicinity of the point \((X_A, Y_A, Z_A)\) and subsequently reach the uranium deposit at the point \((r_F, O, O)\) can be calculated by analytic geometry (see Fig. 3). The angle-of-incidence distribution function and the history average \(\bar{\theta}_I\) can be computed in a manner similar to that used for obtaining the arrival-time distribution function. The angle-of-incidence distribution function is a useful aid in understanding the air-scattering problem because it indicates the direction from which most of the air-scattered neutrons impinge on the uranium deposit.

Calculations were made on a digital computer using the formalism described in the preceding paragraphs. See Appendix I for a listing of the FORTRAN IV code AIRSCI which was written to perform these calculations. The values \(M_{HIST} = 2000\) and \(N_{HIST} = 20000\) were found to yield sufficient statistical stability for the present work. Values of \(F_1\) computed from Eq. (13) should approximate corresponding values of \(F_0\) from Eq. (10)--if finite uranium deposit size effects are neglected--since both formulations of the problem are based on
the same set of physical assumptions. To test this point and to
determine how large \(R_{A,\text{MAX}} \) and \(Z_{A,\text{MAX}} \) have to be so that Eq. (18)
becomes a good approximation to Eq. (13) the following two sets of
calculations were made:

a. The ratio \(F_1/F_0 \) was computed for several values of \(R_{A,\text{MAX}} \)
\((=Z_{A,\text{MAX}}) \) with \(E_n = 1 \text{ MeV}, R_{\text{DISK}} = 1.27 \text{ cm} \) and \(d = 5 \text{ cm} \).
b. The ratio \(F_1/F_0 \) was computed for several values of \(d \) with
\(E_n = 1 \text{ MeV}, R_{\text{DISK}} = 1.27 \text{ cm} \) and \(R_{A,\text{MAX}} = Z_{A,\text{MAX}} \geq 10 \text{ d} \).
The results of these sets of calculations appear in Figs. 5 - 8.

From the values of \(F_1/F_0 \) plotted in Fig. 5 one can conclude that
about half of the air-scattered flux originates from the region of
air space for which \(R_{A,\text{MAX}} = Z_{A,\text{MAX}} \leq d \) which is in agreement with
the interpretation of Eq. (8). From Fig. 6 it is evident that the
effects of the finite size of the uranium deposit essentially dis-
appear for \(d/R_{\text{DISK}} > 3 \). This fact can also be deduced from Fig. 7
which is a plot of \(\delta_1 \) vs. \(d/R_{\text{DISK}} \). \(\delta_1 \) approaches a limit of \(\sim 60^\circ \)
for \(d/R_{\text{DISK}} > 3 \). The variation in shape of the angle-of-incidence
distribution functions with \(d/R_{\text{DISK}} \) is shown in Fig. 8. The effect
of finite uranium deposit size is to produce a forward-angle dip in
the distribution function. This structural feature is still evi-
dent for \(d/R_{\text{DISK}} \sim 5 \). However, for larger values of \(d/R_{\text{DISK}} \) this
feature disappears and the distribution function becomes approxi-
mately linear in \(\delta_1 \).

Another set of calculations was made for various neutron ener-
gies with \(R_{\text{DISK}} = 1.27 \text{ cm}, d = 5 \text{ cm} \) (\(d/R_{\text{DISK}} = 3.94 \)) and \(R_{A,\text{MAX}} = Z_{A,\text{MAX}} > 10 \text{ d} \). The resulting values of \(F_1 \) are plotted in Fig. 4.
Except for some statistical fluctuation, the values of \(F_0 \) and \(F_1 \)
are in excellent agreement. Corresponding scattered neutron arriv-
al-time distributions were obtained from the same set of calcula-
tions and these appear in Fig. 9. Notice that even for low
energies most of the scattered neutrons arrive at the uranium de-
posit within a few nanoseconds after the primary neutrons. It is
clear that it is not feasible to eliminate the effects of prompt
air-scattered neutrons by setting a "window" on the direct-neutron
time peak.
V. DETAILED SINGLE-SCATTERING FORMULATION

Several approximations found in Section III and IV can be relaxed in order to provide a more general treatment of air scattering. Those features of the problem which will be taken into consideration in the present section are:

a. The angular distribution and variation of energy with emission angle for neutrons from the source.

b. Attenuation of both primary and air-scattered neutrons by intervening air.

c. Energy loss by neutrons in elastic and inelastic scattering from nitrogen and oxygen.

d. Angular distribution effects in elastic scattering from nitrogen and oxygen.

e. Finite thickness of the uranium deposit in the fission chamber.

f. Variations in the isotopic content of the fission deposit and energy dependence of the fission cross section.

The quantity F_2 is defined as:

$$F_2 = \text{relative number of fissions produced in the fission detector by air-scattered and primary neutrons.}$$

Monte-Carlo methods similar to those used for calculation of F_1 in Section IV have been applied in calculation of F_2. The parameters r_A, ϕ_A, Z_A and r_F were selected at random and computation was limited to the region of space defined by $R_{A,\text{MAX}}$ and $Z_{A,\text{MAX}}$ as described in Section IV. Thus

$$F_2 \overset{\approx}{=} 2\pi R_{A,\text{MAX}} Z_{A,\text{MAX}} \frac{\left[\begin{array}{c} N_{\text{HIST}} \\ j=1 \end{array}\right] \left[\begin{array}{c} \phi_{A,j} \\ j=1 \end{array}\right]}{N_{\text{HIST}}}$$

(28)

where for each j,

$$\mathcal{R} = f_{S0} \cos \phi_{SO} \left(\frac{r_f}{d^2} \right) \exp \left(-d \cdot \epsilon_{T,\text{AIR}},0 \right) X$$

(29)

-15-
\[
X \left(\frac{\Sigma_{F,U,0}}{\Sigma_{T,U,0}} \right) \left[1 - \exp \left(-\tau \frac{\Sigma_{T,U,0}}{\cos \theta_{SO}} \right) \right]
\]

and
\[
= f_{SO} \cos \theta_{T} \left(\frac{r_{A}r_{F}}{d_{1}d_{2}} \right) \exp \left(\frac{-d_{1}\Sigma_{T,AIR,1}}{X} \right)
\]
\[
\times \left\{ \sum_{k=1}^{3} \left(\frac{\delta_{\Sigma}}{\delta \rho_{\text{AIR}},1k} \right) \exp \left(\frac{-d_{2}\Sigma_{T,AIR,2}}{X} \right) \right\}
\]
\[
X \left(\frac{\Sigma_{F,U,2k}}{\Sigma_{T,U,2k}} \right) \left[1 - \exp \left(-\tau \frac{\Sigma_{T,U,2k}}{\cos \theta_{I}} \right) \right]
\]

with
\[
f_{SO} = \text{neutron source strength as a function of angle}
\]
\[
\theta_{SO} = \text{neutron emission angle.}
\]
\[
\left(\frac{\delta_{\Sigma}}{\delta \rho_{\text{AIR}},1k} \right) = \text{normalized macroscopic differential cross section for the k-th scattering process for air.}
\]
\[
\tau = \text{uranium deposit thickness.}
\]
The subscript "T" designates a total cross section. The subscript "F" designates a fission cross section. The subscripts "0", "1" and "2" designate the neutron paths with respective lengths \(d_{0}, d_{1}\) and \(d_{2}\) as shown in Fig. 3. The subscript "U" designates a process involving the uranium deposit. Finally the subscript "k" designates a particular neutron scattering process in air (\(k = 1): \text{nitrogen elastic scattering}, k = 2: \text{nitrogen inelastic scattering}, \text{and} k = 3: \text{oxygen elastic scattering}). All cross sections designated by a "\(\Sigma\)" are macroscopic.

A digital computer was utilized for calculations of \(F_{2}\). A listing of the FORTRAN IV code AIRSC2 employed in the calculations
appears in Appendix II. Changes in neutron energy following a scattering process (e.g. Ref. 6) can be calculated with AIRSC2. Thus it was possible to determine a distribution of fission events vs. incident neutron energy. This distribution function is quite useful since it enables one to deduce an average energy for scattered neutrons incident on the uranium deposit.

Calculations were made for U-235 enriched deposits and also for deposits which were enriched in U-238. See Table VI for the deposit compositions used in most of the calculations. The deposits were assumed to be uniformly thick. Fission cross sections required for this work were obtained from the ENDF/B-III set [7], from compilations by W. G. Davey [8,9] and from measurements by Meadows [10] (see Table VII for values of these cross sections).

The first set of calculations was carried out with the intent of comparing predictions from the detailed single-scattering formulation with those from Sections III and IV for several neutron energies and a fixed geometry. The parameters used for these calculations are indicated in Table VIII. Unless otherwise stated, the parameters for all other sets of calculations discussed in this section are those from Table VIII. Integrations were carried out over a finite air volume ($R_{A,\text{MAX}} = Z_{A,\text{MAX}} = 30$ cm). Resultant F_2 values were corrected for excluded space by means of data from Fig. 5. Fig. 10 is a plot of F_0 and F_2 for both a U-235 enriched and a U-238 enriched deposit (see Table VI) vs. source neutron energy. The agreement of F_2 and F_0 [computed from Eqs. (10) and (11)] is reasonably good at most energies for the U-235 monitor. The agreement is poor over the energy range 0.85 - 2 MeV for the U-238 monitor. The explanation for this result is that the U-238 fission cross section increases sharply at $E_n \lesssim 1$ MeV and those neutrons which are scattered by air generally lose sufficient energy so that they contribute far fewer fissions per neutron than the primary neutrons. At higher energies, the neutron energies after scattering remain above this threshold region. Figs. 11 and 12 are plots of the number of fissions vs. the energy of incidence of scattered neutrons at a U-235 enriched and U-238 enriched
deposit respectively. The effect of air scattering on the neutron energy spectra is evident. Spectral plots for 5 MeV primary energy show the effect of inelastic scattering from nitrogen. The inelastically scattered neutrons have very little effect on a U-238 deposit below ~ 5 MeV because the U-238 fission cross section is small for the low-energy inelastically scattered neutrons.

Next, the influence of uranium deposit thickness on the calculation of F_2 was investigated. Calculations were made only for U-235 enriched deposits. Deposits with thicknesses ranging from 0.001 to 1000 times that for the deposit described in Table VI were considered. Otherwise, the parameters employed were those indicated in Table VIII. A primary energy of 1 MeV was assumed for this set of calculation. The results appear in Table IX. Clearly, F_2 is insensitive to the deposit thickness for all realistic deposits.

The detailed formulation is capable of taking the neutron source distribution into consideration, so this aspect was investigated next. In order to make a systematic investigation, hypothetical neutron source distributions of the form

$$S(\theta_{\text{LAB}}) = 1 + w_1 P_1 (\cos \theta_{\text{LAB}})$$

(31)

were assumed and w_1 was varied from $w_1 = -1$ (strong backward peaking) through $w_1 = 0$ (isotropic) to $w_1 = 1$ (strong forward peaking). The calculations were made assuming a monoenergetic neutron source of 1 MeV. Otherwise, the parameters of the calculation were as indicated in Table VIII. Resulting values of F_2 are plotted in Fig. 13. The conclusion from this analysis is that the ratio of fissions from air-scattered neutrons and primary neutrons is only moderately sensitive to the neutron source distribution provided that the distribution is more or less forward peaked ($0 < w_1 < 1$). However, the relative contribution from air-scattered neutrons increases sharply if the source distribution is more or less backward peaked ($-1 < w_1 < 0$). In the latter case, the approximate treatments of Sections III and IV do not give reasonable values for the air scattering correction. In practice, most neutron source reactions tend to emit neutrons pre-
dominantly at forward laboratory angles.

The preceding calculations assumed monoenergetic neutrons from the source. In practice, neutron energy varies with emission angle because of the kinematics of source reactions involving finite nuclei. In order to investigate the effect of neutron source kinematic broadening, calculations were performed assuming hypothetical two-body neutron producing reactions with \(Q = 0 \) initiated by a projectile with mass equal to a neutron (\(A_1 = 1.009 \) amu). Target nuclei with masses (in amu) \(A_2 = 2, 5, 10, 20, 50, 100 \) and infinity were considered. The neutron source distributions were assumed to be isotropic. Other parameters of the calculation were as indicated in Table VIII. Calculations were made with primary projectile energies \(E_1 = 1 \) MeV and 3 MeV for both U-235 and U-238 enriched deposits. The results of these calculations appear in Table X. The conclusion to be drawn from these results is that \(F_2 \) is only moderately sensitive to target mass \(A_2 \) for a U-235 enriched deposit. The sensitivity is somewhat greater for a U-238 enriched monitor, presumably because of the more pronounced energy dependency of the fission cross section for U-238.

The influence of the nitrogen and oxygen elastic scattering angular distributions cannot be very large because the agreement of \(F_0 \) from Section III and \(F_2 \) calculated for similar geometry and neutron source characteristics is fairly good except for a U-238 enriched deposit when \(E_n = 0.85 - 2 \) MeV. In order to check this point further, calculations were made for several primary energies with the nitrogen scattering assumed to be isotropic and then with the oxygen scattering assumed isotropic. All other parameters were as indicated in Table VIII. The results of this analysis appear in Table XI. As expected, the substitution of isotropy for either nitrogen or oxygen elastic scattering has a relatively moderate effect on \(F_2 \).

A final application of the detailed single scattering formulation was to calculate \(F_2 \) for a realistic neutron source reaction. Angular distributions for the \(^7\text{Li}(p,n)^7\text{Be} \) reaction, which produces
two distinct groups having Q-values of -1.644 and -2.079 MeV respectively, have been measured for several proton energies by S. A. Elbakr et al. [11]. Coefficients for these distributions, expressed in the laboratory system, are given in Table XII for reference. The results of calculations for a U-235 deposit appear in Fig. 14. Except for the neutron source specifications, the parameters indicated in Table VIII were used in these calculations. Fig. 15 shows the results from a similar set of calculations for a U-238 enriched deposit. Generally, the values of F_2 are smaller for the $^7\text{Li}(p,n)^7\text{Be}$ neutron groups than for an isotropic, monoenergetic source. An exception is the set of F_2 values for a U-235 deposit and the $Q = 2.079$ MeV group from the $^7\text{Li}(p,n)^7\text{Be}$ reaction.

VI. CONCLUSIONS

The number of air scattered neutrons incident upon a fission chamber is small relative to the direct flux for most experimental configurations. The relative importance of air-scattered neutrons is dominated by the distance d from the source to the fission deposit and by the mean free path λ_E for elastic scattering. These two parameters enter as the ratio (d/λ_E). The effect of air scattering generally decreases with increased neutron energy; however, there is a sharp increase in the vicinity of the 0.44 MeV oxygen resonance. Since most of the air scattering occurs near to the source, it is not possible to discriminate against the air-scattered neutrons by means of time of flight. Kinematic broadening of source neutron energies and the shapes of nitrogen and oxygen elastic scattering angular distributions have only a moderate effect on air scattering. The relative importance of air scattering is very sensitive to the angular distribution of the source neutrons and is observed to increase sharply if the source peaks toward back angles. The effect of air scattering on a U-238 enriched deposit is smaller than that for a U-235 deposit for neutrons in the vicinity of 0.82 - 2 MeV where the U-238 fission cross section increases rapidly with energy. The ex-
planation for this effect is that air scattering degrades the neutron energies into a region where the U-238 fission cross section is small. This phenomenon could introduce a noticeable error in measurement of the ratio of the U-238 to U-235 fission cross sections. For example, consider a hypothetical measurement made with a double fission chamber containing two uranium deposits (one enriched in U-235 and the second enriched in U-238) on adjacent backing plates 10 cm from an isotropic fast-neutron source. From Fig. 10 we can deduce that the air-scattering correction is \(\sim 0.3\% \) for U-235 and \(\sim 0.06\% \) for U-238 at \(E_n = 1.5 \text{ MeV} \). Consequently, there is a net correction of \(\sim 0.24\% \) in the cross section ratio. This is not a negligible correction since experimenters are currently striving for accuracies of \(\sim 1\% \) in fission cross section ratio measurements.

ACKNOWLEDGEMENTS

The author is indebted to J. W. Meadows, P. T. Guenther and A. B. Smith for valuable suggestions which they made during the course of this work.
REFERENCES

7. National Neutron Cross Section Center, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

9. W. G. Davey, "An Analysis of the Fission Cross Sections of 232Th, 233U, 234U, 235U, 236U, 237Np, 238U, 239Pu, 241Pu and 242Pu from 1 keV to 10 MeV", Nuclear Science and Engineering 26, 149 (1966).

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{T,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{T,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{T,N}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>10.5</td>
<td>1.096</td>
<td>2.48</td>
<td>2.438</td>
<td>1.51</td>
</tr>
<tr>
<td>0.01</td>
<td>7.8</td>
<td>1.152</td>
<td>1.73</td>
<td>2.833</td>
<td>1.48</td>
</tr>
<tr>
<td>0.403</td>
<td>3.29</td>
<td>1.211</td>
<td>1.61</td>
<td>2.978</td>
<td>1.66</td>
</tr>
<tr>
<td>0.424</td>
<td>5.01</td>
<td>1.273</td>
<td>1.86</td>
<td>3.131</td>
<td>1.67</td>
</tr>
<tr>
<td>0.455</td>
<td>3.35</td>
<td>1.338</td>
<td>2.83</td>
<td>3.292</td>
<td>1.73</td>
</tr>
<tr>
<td>0.468</td>
<td>2.59</td>
<td>1.479</td>
<td>2.07</td>
<td>3.638</td>
<td>1.75</td>
</tr>
<tr>
<td>0.601</td>
<td>1.8</td>
<td>1.555</td>
<td>2.37</td>
<td>3.824</td>
<td>1.69</td>
</tr>
<tr>
<td>0.632</td>
<td>1.91</td>
<td>1.635</td>
<td>2.4</td>
<td>4.226</td>
<td>1.71</td>
</tr>
<tr>
<td>0.665</td>
<td>2.38</td>
<td>1.718</td>
<td>2.05</td>
<td>4.443</td>
<td>1.78</td>
</tr>
<tr>
<td>0.7</td>
<td>2.29</td>
<td>1.806</td>
<td>2.46</td>
<td>4.671</td>
<td>1.86</td>
</tr>
<tr>
<td>0.734</td>
<td>2.06</td>
<td>1.899</td>
<td>1.85</td>
<td>4.91</td>
<td>1.37</td>
</tr>
<tr>
<td>0.943</td>
<td>1.26</td>
<td>2.099</td>
<td>1.58</td>
<td>5.162</td>
<td>1.63</td>
</tr>
<tr>
<td>0.991</td>
<td>1.55</td>
<td>2.206</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.042</td>
<td>2.21</td>
<td>2.32</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elastic Scattering Cross Sections

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{E,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{E,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{E,N}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>10.5</td>
<td>1.152</td>
<td>1.72</td>
<td>3.131</td>
<td>1.36</td>
</tr>
<tr>
<td>0.01</td>
<td>7.8</td>
<td>1.211</td>
<td>1.596</td>
<td>3.292</td>
<td>1.36</td>
</tr>
<tr>
<td>0.403</td>
<td>3.29</td>
<td>1.273</td>
<td>1.84</td>
<td>3.46</td>
<td>1.34</td>
</tr>
<tr>
<td>0.424</td>
<td>5.01</td>
<td>1.338</td>
<td>2.73</td>
<td>3.638</td>
<td>1.37</td>
</tr>
<tr>
<td>0.455</td>
<td>3.35</td>
<td>1.479</td>
<td>1.95</td>
<td>3.824</td>
<td>1.33</td>
</tr>
<tr>
<td>0.468</td>
<td>2.59</td>
<td>1.555</td>
<td>2.32</td>
<td>4.02</td>
<td>1.24</td>
</tr>
<tr>
<td>0.601</td>
<td>1.8</td>
<td>1.635</td>
<td>2.35</td>
<td>4.226</td>
<td>1.23</td>
</tr>
<tr>
<td>0.632</td>
<td>1.76</td>
<td>1.718</td>
<td>2.0</td>
<td>4.443</td>
<td>1.35</td>
</tr>
<tr>
<td>0.665</td>
<td>2.21</td>
<td>1.806</td>
<td>2.3</td>
<td>4.671</td>
<td>1.46</td>
</tr>
<tr>
<td>0.699</td>
<td>2.23</td>
<td>1.899</td>
<td>1.77</td>
<td>4.91</td>
<td>1.05</td>
</tr>
<tr>
<td>0.734</td>
<td>2.03</td>
<td>2.695</td>
<td>1.25</td>
<td>5.16</td>
<td>1.32</td>
</tr>
<tr>
<td>0.943</td>
<td>1.25</td>
<td>2.833</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.096</td>
<td>2.48</td>
<td>2.978</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inelastic Scattering Cross Sections ($Q=-3.945$ MeV)

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{I,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{I,N}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{I,N}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>0.0</td>
<td>4.226</td>
<td>6.763 x 10^{-3}</td>
<td>5.0</td>
<td>1.0 x 10^{-2}</td>
</tr>
<tr>
<td>3.945</td>
<td>0.0</td>
<td>4.443</td>
<td>7.73 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.02</td>
<td>1.751 x 10^{-3}</td>
<td>4.671</td>
<td>8.583 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I (Contd.)

a. Values taken from Ref. 3.

b. A "zero-energy" cross section value is included in the tables to provide a lower limit for interpolation.
TABLE II

Selected Cross Section Values for $0-16^{a}$

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{T,0}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{T,0}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{T,0}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>3.7</td>
<td>1.152</td>
<td>3.03</td>
<td>2.563</td>
<td>1.23</td>
</tr>
<tr>
<td>0.284</td>
<td>3.71</td>
<td>1.211</td>
<td>3.01</td>
<td>2.695</td>
<td>1.22</td>
</tr>
<tr>
<td>0.383</td>
<td>4.26</td>
<td>1.273</td>
<td>4.55</td>
<td>2.833</td>
<td>1.28</td>
</tr>
<tr>
<td>0.403</td>
<td>6.04</td>
<td>1.338</td>
<td>3.8</td>
<td>3.131</td>
<td>1.8</td>
</tr>
<tr>
<td>0.424</td>
<td>11.2</td>
<td>1.479</td>
<td>2.28</td>
<td>3.292</td>
<td>2.86</td>
</tr>
<tr>
<td>0.445</td>
<td>14.5</td>
<td>1.555</td>
<td>2.28</td>
<td>3.46</td>
<td>3.02</td>
</tr>
<tr>
<td>0.468</td>
<td>9.5</td>
<td>1.635</td>
<td>3.47</td>
<td>4.02</td>
<td>1.7</td>
</tr>
<tr>
<td>0.492</td>
<td>5.71</td>
<td>1.718</td>
<td>3.02</td>
<td>4.226</td>
<td>1.82</td>
</tr>
<tr>
<td>0.518</td>
<td>4.28</td>
<td>1.899</td>
<td>2.72</td>
<td>4.443</td>
<td>1.88</td>
</tr>
<tr>
<td>0.544</td>
<td>3.64</td>
<td>2.099</td>
<td>1.4</td>
<td>4.671</td>
<td>1.11</td>
</tr>
<tr>
<td>0.853</td>
<td>3.03</td>
<td>2.32</td>
<td>0.779</td>
<td>4.91</td>
<td>1.13</td>
</tr>
<tr>
<td>0.991</td>
<td>7.47</td>
<td>2.438</td>
<td>0.919</td>
<td>5.162</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Elastic Scattering Cross Sections

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{E,0}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{E,0}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{E,0}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 <sup>b</sup></td>
<td>3.7</td>
<td>1.211</td>
<td>3.01</td>
<td>2.695</td>
<td>1.22</td>
</tr>
<tr>
<td>0.383</td>
<td>4.26</td>
<td>1.273</td>
<td>4.55</td>
<td>2.833</td>
<td>1.28</td>
</tr>
<tr>
<td>0.403</td>
<td>6.04</td>
<td>1.338</td>
<td>3.8</td>
<td>3.131</td>
<td>1.8</td>
</tr>
<tr>
<td>0.424</td>
<td>11.2</td>
<td>1.479</td>
<td>2.28</td>
<td>3.292</td>
<td>2.86</td>
</tr>
<tr>
<td>0.445</td>
<td>14.5</td>
<td>1.555</td>
<td>2.28</td>
<td>3.46</td>
<td>3.02</td>
</tr>
<tr>
<td>0.468</td>
<td>9.5</td>
<td>1.635</td>
<td>3.47</td>
<td>3.638</td>
<td>2.98</td>
</tr>
<tr>
<td>0.492</td>
<td>5.71</td>
<td>1.718</td>
<td>3.02</td>
<td>3.82</td>
<td>2.89</td>
</tr>
<tr>
<td>0.518</td>
<td>4.28</td>
<td>1.899</td>
<td>2.72</td>
<td>4.02</td>
<td>1.63</td>
</tr>
<tr>
<td>0.544</td>
<td>3.64</td>
<td>2.099</td>
<td>1.4</td>
<td>4.443</td>
<td>1.84</td>
</tr>
<tr>
<td>0.853</td>
<td>3.03</td>
<td>2.32</td>
<td>0.779</td>
<td>4.671</td>
<td>1.06</td>
</tr>
<tr>
<td>0.991</td>
<td>7.47</td>
<td>2.438</td>
<td>0.919</td>
<td>4.91</td>
<td>1.03</td>
</tr>
<tr>
<td>1.152</td>
<td>3.03</td>
<td>2.563</td>
<td>1.23</td>
<td>5.162</td>
<td>1.54</td>
</tr>
</tbody>
</table>

a. Values taken from Ref. 3.

b. A "zero-energy" cross section value is included in the table to provide a lower limit for interpolation.
TABLE III

Legendre Coefficients for Nitrogen Laboratory
Elastic-Scattering Angular Distributions^a

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_1</th>
<th>E_n (MeV)</th>
<th>w_1</th>
<th>E_n (MeV)</th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0<sup>b</sup></td>
<td>0.14</td>
<td>1.4</td>
<td>0.58</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.305</td>
<td>1.48</td>
<td>0.48</td>
<td>3.4</td>
<td>0.2</td>
</tr>
<tr>
<td>1.02</td>
<td>0.19</td>
<td>1.62</td>
<td>0.75</td>
<td>4.25</td>
<td>0.8</td>
</tr>
<tr>
<td>1.15</td>
<td>0.66</td>
<td>1.8</td>
<td>0.25</td>
<td>4.95</td>
<td>0.5</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>2.25</td>
<td>0.74</td>
<td>5.4</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_2</th>
<th>E_n (MeV)</th>
<th>w_2</th>
<th>E_n (MeV)</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0<sup>b</sup></td>
<td>0.0</td>
<td>1.45</td>
<td>0.14</td>
<td>3.12</td>
<td>1.56</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.69</td>
<td>3.45</td>
<td>1.78</td>
</tr>
<tr>
<td>1.15</td>
<td>0.45</td>
<td>2.1</td>
<td>0.24</td>
<td>3.92</td>
<td>1.91</td>
</tr>
<tr>
<td>1.25</td>
<td>0.21</td>
<td>2.45</td>
<td>0.65</td>
<td>4.25</td>
<td>1.83</td>
</tr>
<tr>
<td>1.35</td>
<td>0.375</td>
<td>2.8</td>
<td>1.24</td>
<td>5.15</td>
<td>0.96</td>
</tr>
</tbody>
</table>
TABLE III (Contd.)

\[W_3 \]

<table>
<thead>
<tr>
<th>(E_n) (MeV)</th>
<th>(W_3)</th>
<th>(E_n) (MeV)</th>
<th>(W_3)</th>
<th>(E_n) (MeV)</th>
<th>(W_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0(^b)</td>
<td>0.0</td>
<td>1.65</td>
<td>0.2</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.11</td>
<td>3.3</td>
<td>0.35</td>
</tr>
<tr>
<td>1.2</td>
<td>0.21</td>
<td>2.1</td>
<td>0.12</td>
<td>4.25</td>
<td>0.57</td>
</tr>
<tr>
<td>1.35</td>
<td>0.13</td>
<td>2.35</td>
<td>0.35</td>
<td>5.15</td>
<td>0.65</td>
</tr>
</tbody>
</table>

\[W_4 \]

<table>
<thead>
<tr>
<th>(E_n) (MeV)</th>
<th>(W_4)</th>
<th>(E_n) (MeV)</th>
<th>(W_4)</th>
<th>(E_n) (MeV)</th>
<th>(W_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0(^b)</td>
<td>0.0</td>
<td>3.46</td>
<td>0.641</td>
<td>4.671</td>
<td>0.743</td>
</tr>
<tr>
<td>2.9</td>
<td>0.0</td>
<td>3.824</td>
<td>0.549</td>
<td>4.91</td>
<td>0.854</td>
</tr>
<tr>
<td>2.978</td>
<td>0.074</td>
<td>4.02</td>
<td>0.458</td>
<td>5.162</td>
<td>0.731</td>
</tr>
<tr>
<td>3.131</td>
<td>0.32</td>
<td>4.23</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.292</td>
<td>0.499</td>
<td>4.443</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_n (MeV)</td>
<td>W_5</td>
<td>E_n (MeV)</td>
<td>W_5</td>
<td>E_n (MeV)</td>
<td>W_5</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>4.443</td>
<td>0.136</td>
<td>4.91</td>
<td>0.498</td>
</tr>
<tr>
<td>4.4</td>
<td>0.0</td>
<td>4.671</td>
<td>0.303</td>
<td>5.162</td>
<td>0.534</td>
</tr>
</tbody>
</table>

a. Legendre coefficients are derived from data in Ref. 3. Angular distributions may be calculated from Eq. (3), however the coefficients listed above or interpolated values may not yield proper normalization. The computed distributions should be renormalized prior to use in scattering calculations.

b. A "zero-energy" coefficient value is included in the table to provide a lower limit for interpolation.
Table IV

Legendre Coefficients for Oxygen Laboratory Elastic-Scattering Angular Distributionsa

w_1

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_1</th>
<th>E_n (MeV)</th>
<th>w_1</th>
<th>E_n (MeV)</th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>0.12</td>
<td>1.33</td>
<td>1.02</td>
<td>3.64</td>
<td>1.16</td>
</tr>
<tr>
<td>0.15</td>
<td>0.06</td>
<td>1.5</td>
<td>0.24</td>
<td>3.83</td>
<td>1.0</td>
</tr>
<tr>
<td>0.36</td>
<td>-0.59</td>
<td>1.7</td>
<td>0.0</td>
<td>4.05</td>
<td>1.01</td>
</tr>
<tr>
<td>0.46</td>
<td>1.32</td>
<td>2.05</td>
<td>0.42</td>
<td>4.25</td>
<td>0.77</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>2.5</td>
<td>0.08</td>
<td>4.45</td>
<td>1.39</td>
</tr>
<tr>
<td>1.0</td>
<td>0.22</td>
<td>2.95</td>
<td>0.34</td>
<td>4.85</td>
<td>0.4</td>
</tr>
<tr>
<td>1.05</td>
<td>-0.06</td>
<td>3.13</td>
<td>0.73</td>
<td>5.17</td>
<td>0.38</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.18</td>
<td>3.3</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

w_2

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_2</th>
<th>E_n (MeV)</th>
<th>w_2</th>
<th>E_n (MeV)</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>0.0</td>
<td>1.02</td>
<td>1.65</td>
<td>3.3</td>
<td>1.58</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>0.24</td>
<td>4.05</td>
<td>0.82</td>
</tr>
<tr>
<td>0.35</td>
<td>-0.26</td>
<td>1.65</td>
<td>0.48</td>
<td>4.45</td>
<td>1.46</td>
</tr>
<tr>
<td>0.43</td>
<td>0.81</td>
<td>1.7</td>
<td>0.18</td>
<td>4.67</td>
<td>0.3</td>
</tr>
<tr>
<td>0.58</td>
<td>0.08</td>
<td>2.1</td>
<td>0.64</td>
<td>5.15</td>
<td>0.98</td>
</tr>
<tr>
<td>0.82</td>
<td>-0.16</td>
<td>2.45</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>-0.06</td>
<td>3.0</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV (Contd.)

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_3</th>
<th>E_n (MeV)</th>
<th>w_3</th>
<th>E_n (MeV)</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0b</td>
<td>0.02</td>
<td>1.55</td>
<td>0.3</td>
<td>3.62</td>
<td>0.94</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.095</td>
<td>1.64</td>
<td>0.62</td>
<td>3.85</td>
<td>0.94</td>
</tr>
<tr>
<td>0.4</td>
<td>0.24</td>
<td>1.75</td>
<td>0.3</td>
<td>4.15</td>
<td>0.6</td>
</tr>
<tr>
<td>0.65</td>
<td>-0.02</td>
<td>2.0</td>
<td>0.075</td>
<td>4.45</td>
<td>1.46</td>
</tr>
<tr>
<td>0.85</td>
<td>-0.04</td>
<td>2.7</td>
<td>0.02</td>
<td>4.7</td>
<td>0.82</td>
</tr>
<tr>
<td>0.98</td>
<td>0.38</td>
<td>3.0</td>
<td>0.18</td>
<td>5.15</td>
<td>1.22</td>
</tr>
<tr>
<td>1.15</td>
<td>-0.1</td>
<td>3.2</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.48</td>
<td>3.45</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>w_4</th>
<th>E_n (MeV)</th>
<th>w_4</th>
<th>E_n (MeV)</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>-0.02</td>
<td>3.3</td>
<td>0.01</td>
</tr>
<tr>
<td>0.2</td>
<td>0.18</td>
<td>1.25</td>
<td>0.26</td>
<td>3.62</td>
<td>0.33</td>
</tr>
<tr>
<td>0.32</td>
<td>-0.08</td>
<td>1.4</td>
<td>0.12</td>
<td>4.1</td>
<td>0.04</td>
</tr>
<tr>
<td>0.43</td>
<td>0.14</td>
<td>1.52</td>
<td>0.8</td>
<td>4.5</td>
<td>0.56</td>
</tr>
<tr>
<td>0.52</td>
<td>-0.07</td>
<td>1.73</td>
<td>0.32</td>
<td>4.7</td>
<td>0.46</td>
</tr>
<tr>
<td>0.6</td>
<td>0.064</td>
<td>2.4</td>
<td>0.0</td>
<td>5.15</td>
<td>0.76</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.04</td>
<td>2.55</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>0.16</td>
<td>2.83</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_n (MeV)</td>
<td>w_5</td>
<td>E_n (MeV)</td>
<td>w_5</td>
<td>E_n (MeV)</td>
<td>w_5</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>0.0 (^b)</td>
<td>0.0</td>
<td>1.05</td>
<td>0.02</td>
<td>3.62</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>-0.04</td>
<td>1.4</td>
<td>-0.05</td>
<td>3.95</td>
<td>-0.06</td>
</tr>
<tr>
<td>0.35</td>
<td>0.24</td>
<td>1.63</td>
<td>0.8</td>
<td>4.22</td>
<td>0.04</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.02</td>
<td>1.95</td>
<td>0.02</td>
<td>4.7</td>
<td>-0.1</td>
</tr>
<tr>
<td>0.8</td>
<td>0.06</td>
<td>2.55</td>
<td>0.04</td>
<td>5.7</td>
<td>0.32</td>
</tr>
<tr>
<td>0.95</td>
<td>0.52</td>
<td>3.1</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Legendre coefficients are derived from data in Ref. 3. Angular distributions may be calculated from Eq. (3), however the coefficients listed above or interpolated values may not yield proper normalization. The computed distributions should be renormalized prior to use in scattering calculations.

b. A "zero-energy" coefficient value is included in the table to provide a lower limit for interpolation.
TABLE V

Mean Free-Path for Neutron Elastic Scattering in Air\(^a\)

<table>
<thead>
<tr>
<th>(E_n) (MeV)</th>
<th>(\lambda_E) (cm)</th>
<th>(E_n) (MeV)</th>
<th>(\lambda_E) (cm)</th>
<th>(E_n) (MeV)</th>
<th>(\lambda_E) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2973</td>
<td>0.55</td>
<td>8097</td>
<td>2.0</td>
<td>11030</td>
</tr>
<tr>
<td>0.1</td>
<td>3185</td>
<td>0.6</td>
<td>9052</td>
<td>2.25</td>
<td>13780</td>
</tr>
<tr>
<td>0.15</td>
<td>3429</td>
<td>0.7</td>
<td>7984</td>
<td>2.5</td>
<td>14920</td>
</tr>
<tr>
<td>0.2</td>
<td>3714</td>
<td>0.8</td>
<td>9490</td>
<td>2.75</td>
<td>15740</td>
</tr>
<tr>
<td>0.25</td>
<td>4050</td>
<td>0.85</td>
<td>10330</td>
<td>3.0</td>
<td>13760</td>
</tr>
<tr>
<td>0.3</td>
<td>4454</td>
<td>0.9</td>
<td>9495</td>
<td>3.25</td>
<td>12140</td>
</tr>
<tr>
<td>0.35</td>
<td>4947</td>
<td>1.0</td>
<td>6854</td>
<td>3.5</td>
<td>11570</td>
</tr>
<tr>
<td>0.375</td>
<td>5236</td>
<td>1.1</td>
<td>6876</td>
<td>3.75</td>
<td>11700</td>
</tr>
<tr>
<td>0.4</td>
<td>5111</td>
<td>1.2</td>
<td>10260</td>
<td>4.0</td>
<td>14470</td>
</tr>
<tr>
<td>0.425</td>
<td>3115</td>
<td>1.3</td>
<td>7445</td>
<td>4.5</td>
<td>13680</td>
</tr>
<tr>
<td>0.45</td>
<td>3461</td>
<td>1.4</td>
<td>7712</td>
<td>5.0</td>
<td>16890</td>
</tr>
<tr>
<td>0.475</td>
<td>5200</td>
<td>1.5</td>
<td>9338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>6536</td>
<td>1.75</td>
<td>8568</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Values of \(\lambda_E\) computed from Eq. (11).
TABLE VI

Uranium Deposit Compositions Assumed for the Calculations in Section V

U-235 Enriched Deposit

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-234</td>
<td>0.856%</td>
</tr>
<tr>
<td>U-235</td>
<td>93.249%</td>
</tr>
<tr>
<td>U-236</td>
<td>0.332%</td>
</tr>
<tr>
<td>U-238</td>
<td>5.526%</td>
</tr>
</tbody>
</table>

Total mass 878 micrograms

U-238 Enriched Deposit

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>0.415%</td>
</tr>
<tr>
<td>U-238</td>
<td>99.585%</td>
</tr>
</tbody>
</table>

Total mass 2398 micrograms

U-234 and U-236 contents are negligible
TABLE VII

Fission Cross Sections Used in the Present Work

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{F,234}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,234}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,234}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.092</td>
<td>6.0</td>
<td>1.422</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>1.8</td>
<td>1.48</td>
<td>7.0</td>
<td>1.773</td>
</tr>
<tr>
<td>0.1</td>
<td>0.024</td>
<td>2.0</td>
<td>1.508</td>
<td>8.0</td>
<td>1.972</td>
</tr>
<tr>
<td>0.25</td>
<td>0.06</td>
<td>2.4</td>
<td>1.444</td>
<td>9.0</td>
<td>2.012</td>
</tr>
<tr>
<td>0.4</td>
<td>0.262</td>
<td>3.5</td>
<td>1.383</td>
<td>10.2</td>
<td>1.810</td>
</tr>
<tr>
<td>0.6</td>
<td>0.683</td>
<td>4.5</td>
<td>1.275</td>
<td>12.5</td>
<td>1.813</td>
</tr>
<tr>
<td>0.7</td>
<td>1.085</td>
<td>5.0</td>
<td>1.261</td>
<td>15.0</td>
<td>1.996</td>
</tr>
<tr>
<td>0.8</td>
<td>1.26</td>
<td>5.5</td>
<td>1.308</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{F,235}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,235}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,235}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>580.0</td>
<td>0.8</td>
<td>1.133</td>
<td>6.1</td>
<td>1.098</td>
</tr>
<tr>
<td>1.0x10^{-6}</td>
<td>65.0</td>
<td>0.85</td>
<td>1.15</td>
<td>6.3</td>
<td>1.164</td>
</tr>
<tr>
<td>0.001</td>
<td>8.05</td>
<td>0.95</td>
<td>1.218</td>
<td>6.8</td>
<td>1.413</td>
</tr>
<tr>
<td>0.003</td>
<td>4.99</td>
<td>1.0</td>
<td>1.235</td>
<td>7.2</td>
<td>1.552</td>
</tr>
<tr>
<td>0.01</td>
<td>3.21</td>
<td>1.5</td>
<td>1.247</td>
<td>7.6</td>
<td>1.634</td>
</tr>
<tr>
<td>0.0175</td>
<td>2.7</td>
<td>2.0</td>
<td>1.315</td>
<td>8.5</td>
<td>1.751</td>
</tr>
<tr>
<td>0.03</td>
<td>2.27</td>
<td>2.3</td>
<td>1.309</td>
<td>9.5</td>
<td>1.753</td>
</tr>
<tr>
<td>0.055</td>
<td>1.91</td>
<td>2.6</td>
<td>1.281</td>
<td>10.5</td>
<td>1.7</td>
</tr>
<tr>
<td>0.1</td>
<td>1.635</td>
<td>3.2</td>
<td>1.177</td>
<td>11.5</td>
<td>1.7</td>
</tr>
<tr>
<td>0.16</td>
<td>1.478</td>
<td>3.6</td>
<td>1.146</td>
<td>12.5</td>
<td>1.82</td>
</tr>
<tr>
<td>0.24</td>
<td>1.32</td>
<td>4.2</td>
<td>1.089</td>
<td>13.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.35</td>
<td>1.225</td>
<td>4.8</td>
<td>1.056</td>
<td>14.0</td>
<td>2.13</td>
</tr>
<tr>
<td>0.4</td>
<td>1.218</td>
<td>5.4</td>
<td>1.046</td>
<td>15.0</td>
<td>2.16</td>
</tr>
<tr>
<td>0.54</td>
<td>1.16</td>
<td>5.8</td>
<td>1.068</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U-236(n,f) Cross Sections

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{F,236}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,236}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,236}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0a</td>
<td>2.0</td>
<td>0.828a</td>
<td>7.0</td>
<td>1.43c</td>
</tr>
<tr>
<td>0.7</td>
<td>0.027a</td>
<td>2.4</td>
<td>0.882a</td>
<td>7.85</td>
<td>1.73c</td>
</tr>
<tr>
<td>0.9</td>
<td>0.292a</td>
<td>2.8</td>
<td>0.872a</td>
<td>9.0</td>
<td>1.84c</td>
</tr>
<tr>
<td>1.2</td>
<td>0.61a</td>
<td>5.0</td>
<td>0.868a</td>
<td>11.5</td>
<td>1.72c</td>
</tr>
<tr>
<td>1.4</td>
<td>0.69a</td>
<td>5.5</td>
<td>0.822a</td>
<td>13.5</td>
<td>1.65c</td>
</tr>
<tr>
<td>1.6</td>
<td>0.688a</td>
<td>6.0</td>
<td>0.903a</td>
<td>15.0</td>
<td>1.62c</td>
</tr>
</tbody>
</table>

U-238(n,f) Cross Sections

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>$\sigma_{F,238}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,238}$ (barns)</th>
<th>E_n (MeV)</th>
<th>$\sigma_{F,238}$ (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0a</td>
<td>1.514</td>
<td>0.3458c</td>
<td>4.47</td>
<td>0.533c</td>
</tr>
<tr>
<td>0.5</td>
<td>2.34x10$^{-4a}$</td>
<td>1.617</td>
<td>0.4169c</td>
<td>5.08</td>
<td>0.5324</td>
</tr>
<tr>
<td>0.61</td>
<td>1.24x10$^{-3a}$</td>
<td>1.72</td>
<td>0.4472c</td>
<td>5.33</td>
<td>0.540c</td>
</tr>
<tr>
<td>0.75</td>
<td>1.98x10$^{-3a}$</td>
<td>1.821</td>
<td>0.5122c</td>
<td>6.0</td>
<td>0.618a</td>
</tr>
<tr>
<td>0.85</td>
<td>5.87x10$^{-3a}$</td>
<td>1.914</td>
<td>0.5397c</td>
<td>7.0</td>
<td>0.936a</td>
</tr>
<tr>
<td>0.898</td>
<td>0.0123c</td>
<td>2.0</td>
<td>0.5371c</td>
<td>7.5</td>
<td>0.978c</td>
</tr>
<tr>
<td>1.005</td>
<td>0.0163c</td>
<td>2.51</td>
<td>0.5573c</td>
<td>8.5</td>
<td>1.0a</td>
</tr>
<tr>
<td>1.108</td>
<td>0.0273c</td>
<td>3.08</td>
<td>0.525c</td>
<td>10.0</td>
<td>0.974a</td>
</tr>
<tr>
<td>1.205</td>
<td>0.0374c</td>
<td>3.28</td>
<td>0.5242c</td>
<td>12.0</td>
<td>0.995a</td>
</tr>
<tr>
<td>1.306</td>
<td>0.0651c</td>
<td>3.58</td>
<td>0.5352c</td>
<td>13.5</td>
<td>1.098a</td>
</tr>
<tr>
<td>1.401</td>
<td>0.1939c</td>
<td>4.08</td>
<td>0.5336c</td>
<td>15.0</td>
<td>1.25a</td>
</tr>
</tbody>
</table>

a. Values obtained from ENDF/B-III evaluation [7].
b. Values obtained from Davey compilation [20,21].
TABLE VIII

Normal Parameter Set for Air Scattering Calculations
with the Detailed Single Scattering
Formulation Described in Section V

1. Total, elastic and inelastic scattering cross sections for nitrogen
 (Table I).
2. Elastic scattering angular distribution coefficients for nitrogen
 (Table III).
3. Total and elastic scattering cross sections for oxygen (Table II).
4. Elastic scattering angular distribution coefficients for oxygen
 (Table IV).
5. Fission cross sections for U-234, U-235, U-236 and U-238. (Table VII).
6. Uranium deposit masses and compositions. (Table VI).
7. Isotropic, monoenergetic neutron point source.
8. Geometric parameters (see Fig. 3):
 \[d = 5 \text{ cm} \]
 \[R_{\text{DISK}} = 1.27 \text{ cm} \]
 \[R_{A,\text{MAX}} = Z_{A,\text{MAX}} = 30 \text{ cm} \]
TABLE IX

Variation of F_2 with Thickness of a U-235 Enriched Deposita

<table>
<thead>
<tr>
<th>Thickness Multiple</th>
<th>Deposit Weight (gm)</th>
<th>F_2/F_2 (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>8.784×10^{-7}</td>
<td>0.965</td>
</tr>
<tr>
<td>0.01</td>
<td>8.784×10^{-6}</td>
<td>1.079</td>
</tr>
<tr>
<td>0.1</td>
<td>8.784×10^{-5}</td>
<td>0.995</td>
</tr>
<tr>
<td>0.5</td>
<td>4.392×10^{-4}</td>
<td>1.057</td>
</tr>
<tr>
<td>1^b</td>
<td>8.784×10^{-4}</td>
<td>1 $^{\text{Standard Deposit}}$</td>
</tr>
<tr>
<td>2</td>
<td>1.757×10^{-3}</td>
<td>1.027</td>
</tr>
<tr>
<td>5</td>
<td>4.392×10^{-3}</td>
<td>1.014</td>
</tr>
<tr>
<td>10</td>
<td>8.784×10^{-3}</td>
<td>0.973</td>
</tr>
<tr>
<td>100</td>
<td>8.784×10^{-2}</td>
<td>1.083</td>
</tr>
<tr>
<td>1000</td>
<td>8.784×10^{-1}</td>
<td>0.987</td>
</tr>
</tbody>
</table>

a. Values of F_2 were calculated via the techniques of Section V and using the parameters indicated in Table VIII except for the deposit thickness which was variable.

b. The standard deposit is the 878.4 microgram U-235 enriched deposit described in Table VI.
TABLE X

The Effect of Neutron Source Kinematic Broadening on F₂

U-235 Enriched Deposit

<table>
<thead>
<tr>
<th>A₂ (amu)</th>
<th>E₁ = 1 MeV</th>
<th>F₂</th>
<th>E₁ = 3 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.1980 x 10⁻²</td>
<td>0.1003 x 10⁻²</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1298 x 10⁻²</td>
<td>0.8325 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1348 x 10⁻²</td>
<td>0.7209 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1267 x 10⁻²</td>
<td>0.7046 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.1406 x 10⁻²</td>
<td>0.9163 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.1714 x 10⁻²</td>
<td>0.7979 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>Infinite</td>
<td>0.1644 x 10⁻²</td>
<td>0.9055 x 10⁻³</td>
<td></td>
</tr>
</tbody>
</table>

U-238 Enriched Deposit

<table>
<thead>
<tr>
<th>A₂</th>
<th>E₁ = 1 MeV</th>
<th>F₂</th>
<th>E₁ = 3 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5975 x 10⁻³</td>
<td>0.5553 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.6581 x 10⁻³</td>
<td>0.7066 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6199 x 10⁻³</td>
<td>0.8517 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.8130 x 10⁻³</td>
<td>0.8260 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.7485 x 10⁻³</td>
<td>0.8378 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.8714 x 10⁻³</td>
<td>0.8121 x 10⁻³</td>
<td></td>
</tr>
<tr>
<td>Infinite</td>
<td>0.9975 x 10⁻³</td>
<td>0.8649 x 10⁻³</td>
<td></td>
</tr>
</tbody>
</table>

a. Values of F₂ were calculated via the techniques of Section V. Hypothetical two-body neutron producing reactions with Q = 0 which are initiated by a projectile with mass equal to a neutron (A₁ = 1.009 amu) were assumed. Various target nuclei with masses (in amu) A₂ = 2, 5, 10, 20, 50, 100 and infinity were considered. The neutron emission was taken to be isotropic and other parameters required for the calculations described in Section V were taken from Table VIII.
TABLE XI

Sensitivity of F_2 to the Assumed Elastic Scattering Angular Distributions for Nitrogen and Oxygena

U-235 Enriched Deposit

Normal Oxygen Distribution

<table>
<thead>
<tr>
<th>E_1 (MeV)</th>
<th>Normal Nitrogen Distr.</th>
<th>F_2</th>
<th>Isotopic Nitrogen Distr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.1644×10^{-2}</td>
<td></td>
<td>0.1664×10^{-2}</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1390×10^{-2}</td>
<td></td>
<td>0.1500×10^{-2}</td>
</tr>
<tr>
<td>2.5</td>
<td>0.6691×10^{-3}</td>
<td></td>
<td>0.7951×10^{-3}</td>
</tr>
<tr>
<td>3.0</td>
<td>0.9055×10^{-3}</td>
<td></td>
<td>0.9284×10^{-3}</td>
</tr>
<tr>
<td>3.5</td>
<td>0.1323×10^{-2}</td>
<td></td>
<td>0.1072×10^{-2}</td>
</tr>
<tr>
<td>5.0</td>
<td>0.8964×10^{-3}</td>
<td></td>
<td>0.8587×10^{-3}</td>
</tr>
</tbody>
</table>

Normal Nitrogen Distribution

<table>
<thead>
<tr>
<th>E_1 (MeV)</th>
<th>Normal Nitrogen Distr.</th>
<th>F_2</th>
<th>Isotopic Oxygen Distr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.2880×10^{-2}</td>
<td></td>
<td>0.3933×10^{-2}</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1644×10^{-2}</td>
<td></td>
<td>0.1607×10^{-2}</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1390×10^{-2}</td>
<td></td>
<td>0.1510×10^{-2}</td>
</tr>
<tr>
<td>3.5</td>
<td>0.1323×10^{-2}</td>
<td></td>
<td>0.1208×10^{-2}</td>
</tr>
<tr>
<td>4.5</td>
<td>0.9422×10^{-3}</td>
<td></td>
<td>0.1463×10^{-2}</td>
</tr>
</tbody>
</table>
TABLE XI (Contd.)

U-238 Enriched Deposit

Normal Oxygen Distribution

<table>
<thead>
<tr>
<th>E_1(MeV)</th>
<th>Normal Nitrogen Distr.</th>
<th>F_2</th>
<th>Isotropic Nitrogen Distr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>.9975 x 10^{-3}</td>
<td></td>
<td>.1008 x 10^{-2}</td>
</tr>
<tr>
<td>1.8</td>
<td>.9673 x 10^{-3}</td>
<td></td>
<td>.8453 x 10^{-3}</td>
</tr>
<tr>
<td>2.5</td>
<td>.6568 x 10^{-3}</td>
<td></td>
<td>.6878 x 10^{-3}</td>
</tr>
<tr>
<td>3.0</td>
<td>.8649 x 10^{-3}</td>
<td></td>
<td>.1129 x 10^{-2}</td>
</tr>
<tr>
<td>3.5</td>
<td>.1312 x 10^{-2}</td>
<td></td>
<td>.1016 x 10^{-2}</td>
</tr>
<tr>
<td>5.0</td>
<td>.7637 x 10^{-3}</td>
<td></td>
<td>.7266 x 10^{-3}</td>
</tr>
</tbody>
</table>

Normal Nitrogen Distribution

<table>
<thead>
<tr>
<th>E_1(MeV)</th>
<th>Normal Nitrogen Distr.</th>
<th>F_2</th>
<th>Isotropic Nitrogen Distr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>.2814 x 10^{-2}</td>
<td></td>
<td>.3364 x 10^{-2}</td>
</tr>
<tr>
<td>1.0</td>
<td>.9975 x 10^{-3}</td>
<td></td>
<td>.8696 x 10^{-3}</td>
</tr>
<tr>
<td>1.8</td>
<td>.9673 x 10^{-3}</td>
<td></td>
<td>.9059 x 10^{-3}</td>
</tr>
<tr>
<td>3.5</td>
<td>.1312 x 10^{-2}</td>
<td></td>
<td>.1272 x 10^{-2}</td>
</tr>
<tr>
<td>4.5</td>
<td>.8446 x 10^{-3}</td>
<td></td>
<td>.8709 x 10^{-3}</td>
</tr>
</tbody>
</table>

a. Values of F_2 were calculated via the technique of Section V. The parameters indicated in Table VIII were employed except for the substitution of isotropic elastic scattering angular distributions for nitrogen and oxygen where indicated.

-42-
TABLE XII

Coefficients for the Neutron Source Distributions

Corresponding to the \(^{7}\text{Li}(p,n)^{7}\text{Be}\) Reaction\(^a\)

<table>
<thead>
<tr>
<th>Proton Energy (MeV)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>(w_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>1.19</td>
<td>0.5687</td>
<td>0.1619</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td>1.113</td>
<td>0.4518</td>
<td>0.1075</td>
<td>0</td>
</tr>
<tr>
<td>3.2</td>
<td>1.054</td>
<td>0.4437</td>
<td>0.1121</td>
<td>0</td>
</tr>
<tr>
<td>3.4</td>
<td>0.9617</td>
<td>0.4044</td>
<td>0.1044</td>
<td>0</td>
</tr>
<tr>
<td>3.6</td>
<td>0.8843</td>
<td>0.3655</td>
<td>0.4093</td>
<td>(-0.1598 \times 10^{-1})</td>
</tr>
<tr>
<td>3.8</td>
<td>0.7795</td>
<td>0.3440</td>
<td>(0.7762 \times 10^{-2})</td>
<td>(-0.3394 \times 10^{-1})</td>
</tr>
<tr>
<td>4.0</td>
<td>0.6877</td>
<td>0.3714</td>
<td>(0.1662 \times 10^{-2})</td>
<td>(-0.4365 \times 10^{-1})</td>
</tr>
<tr>
<td>4.2</td>
<td>0.6097</td>
<td>0.4622</td>
<td>(-0.6456 \times 10^{-1})</td>
<td>(-0.9487 \times 10^{-1})</td>
</tr>
<tr>
<td>4.4</td>
<td>0.5802</td>
<td>0.5519</td>
<td>(-0.3219 \times 10^{-1})</td>
<td>(-0.8957 \times 10^{-1})</td>
</tr>
<tr>
<td>4.6</td>
<td>0.5612</td>
<td>0.6674</td>
<td>(0.4624 \times 10^{-1})</td>
<td>(-0.6359 \times 10^{-1})</td>
</tr>
<tr>
<td>4.8</td>
<td>0.5207</td>
<td>0.6743</td>
<td>0.1318</td>
<td>(-0.1948 \times 10^{-1})</td>
</tr>
<tr>
<td>5.0</td>
<td>0.4674</td>
<td>0.7297</td>
<td>0.3098</td>
<td>(0.6363 \times 10^{-1})</td>
</tr>
</tbody>
</table>
TABLE XII (Contd.)

Second Group Neutrons (Q = -2.079 MeV)

<table>
<thead>
<tr>
<th>Proton Energy (MeV)</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>0.38</td>
<td>-0.1695</td>
<td>-0.1773</td>
<td>-0.7445 x 10^{-1}</td>
</tr>
<tr>
<td>3.4</td>
<td>0.2859</td>
<td>-0.1582</td>
<td>-0.1427</td>
<td>-0.5812 x 10^{-1}</td>
</tr>
<tr>
<td>3.6</td>
<td>0.1832</td>
<td>-0.443 x 10^{-1}</td>
<td>-0.4813 x 10^{-3}</td>
<td>-0.495 x 10^{-2}</td>
</tr>
<tr>
<td>3.8</td>
<td>0.114</td>
<td>0.517 x 10^{-1}</td>
<td>0.7592 x 10^{-2}</td>
<td>0.1545 x 10^{-1}</td>
</tr>
<tr>
<td>4.0</td>
<td>-0.3831</td>
<td>0.2217</td>
<td>-0.6469 x 10^{-1}</td>
<td>0.755 x 10^{-3}</td>
</tr>
<tr>
<td>4.2</td>
<td>-0.4815 x 10^{-3}</td>
<td>0.223</td>
<td>-0.2205 x 10^{-2}</td>
<td>-0.5722 x 10^{-1}</td>
</tr>
<tr>
<td>4.4</td>
<td>-0.3763 x 10^{-1}</td>
<td>0.2364</td>
<td>-0.6162 x 10^{-2}</td>
<td>-0.6 x 10^{-1}</td>
</tr>
<tr>
<td>4.6</td>
<td>-0.9986 x 10^{-1}</td>
<td>0.2952</td>
<td>0.2167 x 10^{-1}</td>
<td>-0.5371 x 10^{-1}</td>
</tr>
<tr>
<td>4.8</td>
<td>-0.7796 x 10^{-1}</td>
<td>0.3609</td>
<td>-0.6173 x 10^{-1}</td>
<td>-0.1084</td>
</tr>
<tr>
<td>5.0</td>
<td>-0.7609 x 10^{-1}</td>
<td>0.4322</td>
<td>-0.8369 x 10^{-1}</td>
<td>-0.1287</td>
</tr>
</tbody>
</table>

a. Laboratory angular distributions for the $^7\text{Li}(p,n)^7\text{Be}$ reaction were obtained by transformation of the center-of-momentum distributions given by Elbakr et al. [11]. These distributions were fitted with the Legendre expansion

$$S(\theta_{\text{LAB}}) = 1 + \sum_{k=1}^{n} w_k P_k (\cos \theta_{\text{LAB}}).$$

A fourth-order expansion ($n=4$) was found to be adequate for this purpose.
FIGURE CAPTIONS

Fig. 1. Laboratory neutron elastic-scattering angular distributions for nitrogen computed from the Legendre coefficients given in Table III. The curves were all plotted using the same ordinate scale. The neutron energies shown are in MeV. The negative cross sections appearing at 2.5 MeV are nonphysical and such values were excluded from the scattering calculations. (ANL Neg. No. 116-1904).

Fig. 2. Laboratory neutron elastic-scattering angular distributions for oxygen computed from the Legendre coefficients given in Table IV. The curves were all plotted using the same ordinate normalization. The neutron energies shown are in MeV. Notice the strong forward scattering near the 0.44 MeV resonance. (ANL Neg. No. 116-1912).

Fig. 3. Schematic diagram of a thin uranium deposit in a fission chamber which is placed near a point source of neutrons. (ANL Neg. No. 116-1909).

Fig. 4. The solid curve is a plot of F_0 computed from Eq. (10) using values of λ_E from Table V for $d = 5$ cm. The individual points are values of F_1 for $d = 5$ cm and $R_{\text{DISK}} = 1.27$ cm computed via the Monte-Carlo techniques described in Section IV. (ANL Neg. No. 116-1906).

Fig. 5. Plot of the ratio F_1/F_0 computed from Eqs. (10) and (19) for several values of $R_{\text{A,MAX}} = Z_{\text{A,MAX}}$ with $E_n = 1$ MeV, $d = 5$ cm and $R_{\text{DISK}} = 1.27$ cm. (ANL Neg. No. 116-1905).

Fig. 6. Plot of the ratio F_1/F_0 computed from Eqs. (10) and (19) for several values of d with $E_n = 1$ MeV, $R_{\text{DISK}} = 1.27$ cm and $R_{\text{A,MAX}} = Z_{\text{A,MAX}} > 10$ d. (ANL Neg. No. 116-1913).
Fig. 7. Plot of the average angle of incidence θ_i for several values of d with $E_n = 1$ MeV, $R_{\text{DISK}} = 1.27$ cm and $R_{A,\text{MAX}} = Z_{A,\text{MAX}} > 10$ d. Computations were performed according to procedures described in Section IV. (ANL Neg. No. 116-1908).

Fig. 8. Plots of the neutron angle-of-incidence distributions for several values of d with $E_n = 1$ MeV, $R_{\text{DISK}} = 1.27$ cm and $R_{A,\text{MAX}} = Z_{A,\text{MAX}} > 10$ d. Computations were performed according to procedures described in Section IV. The distribution function becomes nearly linear when d/R_{DISK} becomes large and the effects of finite uranium deposit size are negligible. (ANL Neg. No. 116-1911).

Fig. 9. Plots of the neutron arrival-time distributions for several neutron energies with $R_{\text{DISK}} = 1.27$ cm, $d = 5$ cm and $R_{A,\text{MAX}} = Z_{A,\text{MAX}} > 10$ d. Computations were performed according to procedures described in Section IV. (ANL Neg. No. 116-1910).

Fig. 10. Plot of F_0 and of F_2 for a U-235 enriched deposit and for a U-238 enriched deposit. Calculations were performed according to the methods of Sections III and V using the parameters indicated in Table VIII. (ANL Neg. No. 116-1907).

Fig. 11. Plots of the relative number of fissions vs. the energy of neutrons incident upon a U-235 enriched deposit. Notice the appearance of an inelastic contribution in the plot for 5 MeV primary energy. Calculations were performed with the methods of Section V and the parameters indicated in Table VIII. (ANL Neg. No. 116-1915).

Fig. 12. Plots of the relative number of fissions vs. the energy of neutrons incident upon a U-238 enriched deposit. Notice the appearance of an inelastic contribution in the plot for 5 MeV primary energy. Calculations were performed with the methods of Section V and the parameters indicated in Table VIII. (ANL Neg. No. 116-1914).
Fig. 13. Dependence of F_2 on the shape of the neutron source distribution. The insert figures show the neutron source distribution shapes $S(\theta_{\text{LAB}}) = 1 + w_1 P_1(\cos \theta_{\text{LAB}})$ for $w_1 = -1, 0$ and 1. Calculations were made for a primary energy of 1 MeV and additional parameters of the calculations were as indicated in Table VIII. The calculational procedure is described in Section V. Notice that F_2 is very sensitive to the value of w_1 for $-1 \leq w_1 < 0$ (back angle peaking). (ANL Neg. No. 116-1903).

Fig. 14. Plot of F_0 and of F_2 for a U-235 enriched deposit. Calculations were made assuming an isotropic, monoenergetic neutron source as well as the $Q = -1.644$ MeV and $Q = -2.079$ MeV groups from the $^7\text{Li}(p,n)^{7}\text{Be}$ reaction. Other parameters required for these calculations were obtained from Table VIII and the methods of Sections III and IV were used in the analysis. (ANL Neg. No. 116-1916).

Fig. 15. Plot of F_0 and of F_2 for a U-238 enriched deposit. Calculations were made assuming an isotropic, monoenergetic neutron source as well as the $Q = -1.644$ MeV and $Q = -2.079$ MeV groups from the $^7\text{Li}(p,n)^{7}\text{Be}$ reaction. Other parameters required for these calculations were obtained from Table VIII and the methods of Sections III and IV were used in the analysis. (ANL Neg. No. 116-1917).
\(\frac{F_1}{F_0} \) vs. \(\left(\frac{d}{R_{\text{disk}}} \right) \)
\(\bar{\theta}_i \) (DEGREES)

SUPPRESSED ZERO

(\(d / R_{\text{DISK}} \))
Fig. 8

Relative Air-Scattered Yield

θ° DEGREES
Fig. 9

Relative air-scattered yield

\[E_N = 0.05 \text{ MEV} \]

\[E_N = 0.1 \text{ MEV} \]

\[E_N = 0.2 \text{ MEV} \]

\[E_N = 0.3 \text{ MEV} \]

\[E_N = 0.5 \text{ MEV} \]

\[E_N = 0.7 \text{ MEV} \]

\[E_N = 1.0 \text{ MEV} \]

\[E_N = 1.5 \text{ MEV} \]

\[E_N = 2.0 \text{ MEV} \]

\[E_N = 3.0 \text{ MEV} \]

\[E_N = 4.0 \text{ MEV} \]

\[E_N = 5.0 \text{ MEV} \]

\((T - T_{\text{min}}) \text{, nanoseconds} \)
Fig. 11

Fissions vs. Incident Neutron Energy, Relative

E = 0.1 MeV

E = 0.2 MeV

E = 0.3 MeV

E = 0.5 MeV

E = 1.0 MeV

E = 2.0 MeV

E = 3.0 MeV

E = 5.0 MeV

Incident Neutron Energy, MeV
Fig. 12

Fissions vs. Incident Neutron Energy, Relative

E = 0.1 MeV
E = 0.2 MeV
E = 0.3 MeV
E = 0.5 MeV
E = 1.0 MeV
E = 2.0 MeV
E = 3.0 MeV
E = 5.0 MeV

Incident Neutron Energy, MeV
AIR SCATTERING FRACTION

NEUTRON FLUX, RELATIVE

SOURCE ANGLE, DEG.

$W_1 = -1.0$

$W_1 = 0.0$

$W_1 = 1.0$
RATIO OF AIR-SCATTERED TO PRIMARY NEUTRONS ($\times 10^3$)

ZERO-DEGREE NEUTRON ENERGY, MEV

F_0 F_2 ISOTROPIC F_2 1ST GROUP F_2 2ND GROUP

U-235 DEPOSIT

PIG. 14
Fig. 15

RATIO OF AIR-SCATTERED TO PRIMARY NEUTRONS (X 10^3)

F_0

F_2 ISOTROPIC

F_2 1ST GROUP

F_2 2ND GROUP

U-238 DEPOSIT

ZERO-DEGREE NEUTRON ENERGY, MEV
APPENDIX I

Listing of FORTRAN IV Code AIRSC1

This program was used in conjunction with an SEL 840 MP computer equipped with an extended arithmetic unit to perform the calculations discussed in Section IV. The interpolation tables included in the input provide basic physical data, such as cross sections, which are required for the calculations. Unit 1 refers to a teletype I/O device, Unit 4 is a card reader while Unit 5 is a line printer.
C
C
DIMENSION ENE(50), SIGE(50), EOE(50), SIGOE(50), THI(36), YSA(36), RA
1(36), T(20), YST(21), RTIME(21)
DATA ATMDN, ATMD0, AVOG, PI1, PI2, .4034*20., 1.066E*20., 1E=23, 3.14159,
1.23318/
VALUE(2, VMIN, VMAX) = VMIN*2*(VMAX-VMIN)

CONTROL
1 READ(4,2) IC
2 F0RMAT(11)
 G0 T0(10, 20, 30, 40), IC
10 PAUSE
 G0 T0 1

READ INTERPOLATION TABLES
20 READ(4,31) NNE
 READ(4,21) (ENE(I), SIGE(I), I=1, NNE)
21 F0RMAT(8E10,4)
 READ(4,31) NOE
 READ(4,21) (EOE(I), SIGOE(I), I=1, NOE)

READ AND WRITE BASIC PARAMETERS
30 READ(4,21) D, RDISK
 READ(4,31) MHIST, NHIST, NTIME, NANG
31 F0RMAT(1615)
 READ(4,21) ZAMAX, RAMAX, TRANG
 WRITE(5,35) D, RDISK
35 F0RMAT(1H1,7HD, RDISK/2E10, 4)
 WRITE(5,36) MHIST, NHIST, NTIME, NANG
36 F0RMAT(2H1, MHIST, NHIST, NTIME, NANG/416)
 WRITE(5,37) ZAMAX, RAMAX, TRANG
37 F0RMAT(1H2, ZAMAX, RAMAX, TRANG/3E10, 4)
 WRITE(5,38)
38 F0RMAT(/SH....)

READ AND WRITE E
40 READ(4,21) E
 WRITE(5,42) E
42 F0RMAT(1HE/E10,4)

CALCULATE MACROSCOPIC ELASTIC SCATTERING CROSS SECTION AND MEAN
FREE PATH FOR ELASTIC SCATTERING

CALL INTRPL(ENE, ENE, SIGE, E, VSNE)
CALL INTRPL(EOE, EOE, SIGOE, E, VS0E)
SIGE = AVOG*(ATMDN*VSNE+ATMD0*VS0E)
FREE = 1.0/SIGE

CALCULATE INCIDENT ANGLES THI(I)
30 48 I=1, NANG
48 THI(I) = 180.0*FLOAT(I)/FL2AT(NANG)
CALCULATE T(I) AND TMIN

DO 50 I=1,NTIME
50 T(I)=TRANG*FLOAT(I)/FLOAT(NTIME)
TMIN=TIME(E,D)

CALCULATE YDIR

YDIR=0.0
DO 150 IDIR=1,MHIST

SELECT RF AT RANDOM

Z=RA*F(-1)
RF=VALUE(Z,0,0,DRISK)

CALCULATE THS AND DO

THS=ATAN(RF/D)
DO=D/COS(THS)

100 YDIR=YDIR+(RF/DO/DO)

CALCULATE HISTORY AVERAGE

YDIR=YDIR/FLOAT(MHIST)

CALCULATE YSA(I) AND YST(I)

DO 105 I=1,NANG
105 YSA(I)=0.0
NBIN=TIME+1
DO 110 I=1,NBIN
110 YST(I)=0.0
SUMTH=0.0
SUMD=0.0

DO 90 J=1,NHIST

SELECT RF,RA,ZA AND PHA AT RANDOM

Z=RA*F(-1)
RF=VALUE(Z,0,0,DRISK)
Z=RA*F(-1)
RA=VALUE(Z,0,0,DRAMAX)
Z=RA*F(-1)
ZA=VALUE(Z,-ZAMAX,ZAMAX)
Z=RA*F(-1)
PHA=VALUE(Z,0,0,PI2)

CALCULATE XA,YA,D1 AND D2. SKIP TRIAL IF D1 OR D2 TOO SMALL

XA=RA*COS(PHA)
YA=RA*SIN(PHA)
D1=SQRT(XA*XA+YA*YA+(ZA-D)*(ZAMAX-ZA))
IF(D1=.1E-10) 900,900,120
120 D2=SQRT((XA-RF)*(XA-RF)+YA*YA+ZA*ZA)
IF(D2=.1E-10) 900,900,130

CALCULATE THINC AND INDXA

-65-
CALL ANGLE(0.0,0.0,0.0,0.0,0.0,RF,0.0,XA,YA,ZA,THINC)
THINC=37.295795*THINC
INDXA=THINC*FLOAT(NANG)/180.001
INDXA=INDXA+1

CALCULATE T1, T2 AND INDXT

T1=TIME(E,D1)
T2=TIME(E,D2)
INDXT=(T1+T2-TMIN)*FLOAT(NTIME)/TRANG
INDXT=INDXT+1
IF(INDXT,GT,NB1N) INDXT=NBIN

YLD=RA*RF/D1/U1/U2/D2
SUMV=SUMT=SUMTH+YLD*THINC
SUMP=SUMM*YLD
YSA(I,INDXA)=YSA(INDXA)*YLD
YST(I,INDXT)=YST(INDXT)*YLD

CONTINUE

MULTIPLY BY SIGME AND AIR PARAMETER SPACE VOLUME. CALCULATE HISTORY AVERAGES

DO 905 I=1,NANG
905 YSA(I)=RAMAX*ZAMAX*SIGME*YSA(I)/FLOAT(NHIST)

DO 910 I=1,NBIN
910 YST(I)=RA*MAX*ZAMAX*SIGME*YST(I)/FLOAT(NHIST)

THINC=SUMTH/SUMP

CALCULATE RANG(I), RTIME(I), TOTRAT, FT1 AND FT2

DO 920 I=1,NANG
920 RANG(I)=YSA(I)/YDIR
TOTRAT=0.0
DO 1000 I=1,NBIN
RTIME(I)=YST(I)/YDIR
1000 TOTRAT=TOTRAT+RTIME(I)
FT2=RTIME(NBIN)/TOTRAT
FT1=1.0-FT2

WRITE RESULTS

WRITE(5,1900) YDIR
1900 FORMAT(4(YDIR/E10.4))
WRITE(5,2000) THI, FREE
2000 FORMAT(9,THI, FREE/E10.4)
WRITE(5,2400)
2400 FORMAT(6THI(I))
WRITE(5,3000) (THI(I),I=1,NANG)
WRITE(5,2401)
2401 FORMAT(7HRANG(I))
WRITE(5,3000) (RANG(I),I=1,NANG)
WRITE(5,2001)
2001 FORMAT(4HT(I))
WRITE(5,3000) (T(I),I=1,NTIME)
3000 FORMAT(4E10.4)
WRITE(5,2002)
2002 FORMAT(8HRTIME(I))
WRITE(5,3000) (RTIME(I),I=1,NTIME)
```
C

GO TO 1
END

FUNCTION TIME(E1,E)
E=E1/934.549
V=(.2997925E+11)*SQRT(1.0-(1.0/(E+1.0))/(E+1.0))
TIME=E/V
RETURN
END

SUBROUTINE ANGLE(X1H,Y1H,Z1H,X1T,Y1T,Z1T,X2H,Y2H,Z2H,X2T,Y2T,Z2T,TH)
V1=SQRT((X1H-X1T)*(X1H-X1T)+(Y1H-Y1T)*(Y1H-Y1T)+(Z1H-Z1T)*(Z1H-Z1T))
V2=SQRT((X2H-X2T)*(X2H-X2T)+(Y2H-Y2T)*(Y2H-Y2T)+(Z2H-Z2T)*(Z2H-Z2T))
DTH=V1/V2
TH=ARCOS(DTH)
RETURN
END

FUNCTION ARCOS(X,K)
ARCOS=X*57.295795
IF(X*GT.1.0E-10) ARCOS=ATAN(SQRT(1.0/X/X-1.0))
IF(X*LT.0.0) ARCOS=3.1415926-ARCOS
GO TO (100,200)
100 ARCOS=ARCOS*57.295795
200 RETURN
END

SUBROUTINE INTERPL(N,XT,YT,X,Y)
DIMENSION XT(N),YT(N)
IF(X-XT(1)) 1,3,4
1 WRITE(1,2)
2 FORMAT(8HRANG EHR)
PAUSE
3 Y=YT(1)
GO TO 24
4 IF(X-XT(N)) 7,5,1
5 Y=YT(N)
GO TO 24
7 I=0
8 J=N
9 K=0.5*FLOAT(J-1)+0.1
K=K+I
IF(X-XT(K)) 9,10,11
10 J=K
GO TO 12
11 Y=YT(K)
GO TO 24
12 I=K
13 I=I+1
DEN=XT(J)-XT(I)
C1=(XT(J)*YT(I)-XT(I)*YT(J))/DEN
```
C2 = (YT(J) - YT(I)) / LEN
Y = C1 * C2 * X
24 RETURN
END
APPENDIX II

Listing of FORTRAN IV Program AIRSC2

This program was used in conjunction with an SEL 840 MP computer equipped with an extended arithmetic unit to perform the calculations discussed in Section V. The interpolation tables included in the input provide basic physical data, such as cross sections, which are required for the calculations. Unit 1 refers to a teletype I/O device, Unit 4 is a card reader (or punch for output) while Unit 5 is a line printer.
DIMENSION WS(5), ATHU(4), NUT(4), EUT(4, 20), SIGUT(4, 20), NUF(4), EUF(4, 150), SIGUF(4, 50), EUNET(50), SIGNT(50), ENE(50), SIGNE(50), NWNE(5), EWNE(5), IN(5), ENY(5), NENY(5), ENENY(5), WENY(5), WENENY(5), Q0I(3), N0I(3), E0I(3), SIG1(3, 20), SIG2(3, 20), T(20), YS2CAT(21), RAT10(21), THIC(36), YSANG(36), TFANG(36), ENER(100), YSEN(100), REN(100), A(50), B(50), WORK(50)
DATA ATM00, ATMS00, AV50, PI1, PI2, 43.434E+20, 1.066E+20, 1.E-23, 3.14159, 6.128316 /

VALUE(Z, VMIN, VMAX) = VMIN + Z*(VMAX - VMIN)

CONTROL
1 READ(4, 2) IC
2 FORMAT(11)
3 G0 T0(10, 20, 30, 40), IC
10 PAUSE
4 G0 T2 1

READ INTERPOLATION TABLES
20 DO 22 I = 1, 4
4 READ(4, 21) NUT(I)
21 FORMAT(1615)
5 N = NUT(I)
22 READ(4, 23) (EUT(I, J), SIGUT(I, J), J = 1, N)
23 FORMAT(8E10.4)
6 D0 23 I = 1, 4
7 READ(4, 21) NUF(I)
8 N = NUF(I)
231 READ(4, 23) (EUF(I, J), SIGUF(I, J), J = 1, N)
9 READ(4, 21) NNT
10 READ(4, 23) (ENT(I), SIGNT(I), I = 1, NNT)
11 READ(4, 21) NNNE
12 READ(4, 23) (ENNE(I), SIGNE(I), I = 1, NNNE)
13 D0 24 I = 1, 5
14 READ(4, 21) NNNE
15 N = NNNE
16 READ(4, 23) (ENNE(I, J), WNE(I, J), J = 1, N)
17 READ(4, 21) NNNI
18 IF(MNNI, NEQ, 0) G0 T2 26
19 READ(4, 23) (NNNI(I), I = 1, MNNI)
20 D0 25 I = 1, MNNI
21 READ(4, 21) NNI(I)
22 N = NNI(I)
25 READ(4, 23) (ENNI(I, J), SIGNI(I, J), J = 1, N)
26 READ(4, 21) N0T
27 READ(4, 23) (E0T(I), SIG0T(I), I = 1, N0T)
28 READ(4, 21) N0E
29 READ(4, 23) (E0E(I), SIG0E(I), I = 1, N0E)
30 D0 27 I = 1, 5
31 READ(4, 21) N0E
32 N = N0E
37 READ(4, 23) (E0E(I, J), W0E(I, J), J = 1, N0E)
38 READ(4, 21) M0I
39 IF(M0I, NEQ, 0) G0 T2 30
40 READ(4, 23) (MU(I), I = 1, M0I)
DO 28 I=1,N01
READ(4,21) N01(I)
N=N01(I)
28 READ(4,23) (EX(I,J),SIG(I,J),J=1,N)
C
READ AND WRITE BASIC PARAMETERS
C
30 READ(4,21) MHIST,NHISTL,NTIME,NANG,NEVR
READ(4,23) ZAMAX,RAMAX
READ(4,23) D,RDISK
READ(4,23) (ATMU(I),I=1,4)
READ(4,23) TRANG
READ(4,23) A1,A2,QS
WRITE(5,31) MHIST,NHISTL,NTIME,NANG,NEVR
31 FORMAT(1H1,28HMHIST,NHISTL,NTIME,NANG,NEVR/516)
WRITE(5,32) ZAMAX,RAMAX
32 FORMAT(11HZAMAX,RAMAX/2E10,4)
WRITE(5,33) D,RDISK
33 FORMAT(7HD,RDISK/2E10,4)
WRITE(5,34)
34 FORMAT(7HATMU(I))
WRITE(5,23) (ATMU(I),I=1,4)
WRITE(5,35) TRANG
35 FORMAT(5HTRANG/E10,4)
WRITE(5,36) A1,A2,QS
36 FORMAT(8HA1,A2,QS/3E10,4)
WRITE(5,37)
37 FORMAT(/5H.....)
C
READ AND WRITE VARIABLE PARAMETERS
C
40 READ(4,41) E1,NWS
41 FORMAT(E10,4,15)
IF(NWS.GT.0) READ(4,23) (WS(I),I=1,NWS)
WRITE(5,42) E1,NWS
42 FORMAT(/6HE1,NWS/E10,4,15)
IF(NWS.EQ.0) GO TO 50
WRITE(5,43)
43 FORMAT(5HS(I))
WRITE(5,23) (WS(I),I=1,NWS)
C
CALCULATE T(I)
C
50 DO 51 I=1,NTIME
51 T(I)=TRANG*FLOAT(I)/FLOAT(NTIME)
C
CALCULATE THIC(I)
C
DO 52 I=1,NANG
52 THIC(I)=180.0*FLOAT(I)/FLOAT(NANG)
C
CALCULATE FLIGHT TIME SPREAD FOR DIRECT EVENTS,ENMAX AND ENER(I)
C
THS=ATAN(0.0001*EN0)
D0=D/COS(THS)
CALL <INAM(A1,A2,1.0087,QS,E1,THS,EN0,EDUM)
TMAX=TIME(EN0,D0)
CALL <INAM(A1,A2,1.0087,QS,E1,0.0,EN0,EDUM)
ENMAX=1.00001*EN0
TMIN=TIME(EN0,D0)

-71-
DT = TMAX - TMIN
D0 53 I = 1, NENR
53 ENER(I) = ENMAX * FLOAT(I) / FLOAT(NENR)

C

CALCULATE ZERO-DEGREE MEAN FREE PATH

CALL INTRPL(NNT, ENT, SIGNT, ENO, VSNT)
CALL INTRPL(NOT, EOT, SIGOT, ENO, VSOT)
SIGAIR = AVQG * (ATMD0 * VSNT + ATMD0 * VSOT)
FREE = 1.0 / SIGAIR

C

CALCULATE YDIR

YDIR = 0.0
D0 100 IDIR = 1, MHIST

C

SELECT RF AT RANDOM

Z = RANF(-1)
RF = VALUE(Z, 0.0, RDISK)

C

CALCULATE THS, D0 AND ENO

THS = ATAN(RF/D)
CS = COS(THS)
D0 = D/CS
CALL KINAM(A1, A2, 1.0087, QS, E1, THS, ENO, EDUM)

C

CALCULATE SOURCE FLUX

CALL DISTR(NWS, WS, THS, FS)

C

CALCULATE ATTN0

CALL INTRPL(NNT, ENT, SIGNT, ENO, VSNT)
CALL INTRPL(NOT, EOT, SIGOT, ENO, VSOT)
SIGAIR = AVQG * (ATMD0 * VSNT + ATMD0 * VSOT)
ATTN0 = EXF(-SIGAIR * D0)

C

CALCULATE FUT AND FUF

FUT = 0.0
D0 61 I = 1, 4
N = NUT(I)
D0 60 J = 1, N
A(J) = EUV(I, J)
60 B(J) = SIGUT(I, J)
CALL INTRPL(N, A, B, ENO, VSUT)
61 FUT = FUT + ATMU(I) * VSUT
FUT = FUT * AVQG
FUF = 0.0
D0 63 I = 1, 4
N = NUF(I)
D0 62 J = 1, N
A(J) = EUF(I, J)
62 B(J) = SIGUF(I, J)
CALL INTRPL(N, A, B, ENO, VSUF)
63 FUF = FUF + ATMU(I) * VSUF
FUF = FUF * AVQG

C
100 YDIR=YDIR+(FS*CS*ATTNO*RF*FUF*TRANS(FUT,P1,RDISK,CS)/DO/DO/FUT)

CALCULATE HISTORY AVERAGE

YDIR=YDIR/FL0AT(NHIST)

..,..CALCULATE YSCAT(I),YSANG(I) AND YSEN(I)

NBIN=\TIME+1
D0 11J I=1,NB1N
110 YSCAT(I)=0.0
D0 111 J=1,NANG
111 YSANG(I)=0.0
D0 112 J=1,NENR
112 YSEN(I)=0.0
SUMN=0.0
SUMNH=0.0
SUMD=0.0

NHIST=0
113 CONTINUE
NHIST=NHIST+1

SELECT RF,RA,ZA AND PHA AT RANDOM

Z=RANF(-1)
RF=VALUE(Z,0.0,DISK)
Z=RANF(-1)
RA=VALUE(Z,0.0,RA0MAX)
Z=RANF(-1)
ZA=VALUE(Z,-ZAMAX,ZAMAX)
Z=RANF(-1)
PHA=VALUE(Z,0.0,P12)

CALCULATE XA,YA,D1 AND D2. SKIP TRIAL IF D1 OR D2 TO0 SMALL

XA=RA*COS(PHA)
YA=RA*SIN(PHA)
D1=SQR(T(AABS((XA-XA+YA*YA+(ZA-D)*(ZA-D)))
IF((D1/D)=.1E-05) 113,113,120
120 D2=SQR(T(AABS((XA-RF)*(XA-RF)+YA*YA+ZA*ZA)))
IF((D2/D)=.1E-05) 113,113,130

CALCULATE THS,EN1 AND T1

130 CALL ANGLE(0.0,0.0,0.0,0.0,0.0,D,XA,YA,ZA,0.0,0.0,D,THS)
CALL KINAM(A1,A2,1.0087,O5,E1,THS,EN1,EDUM)
T1=TIME(EN1,D1)

CALCULATE SOURCE FLUX

CALL DISTR(NWS*WS,THS,FS)

CALCULATE ATTN1

CALL INTRPL(NNT,ENT,SIGN,EN1,VSSNT)
CALL INTRPL(NUT,EUT,SIGOT,EN1,VSSOT)
SIGAIR=AVERAGE(ATTN*VSSNT+ATMD*VSOT)
ATTN1=EXF(-SIGAIR*D1)

-73-
CALCULATE THA, THI, THINC AND INDEX. SKIP TRIAL IF THINC TOO CLOSE TO 90 DEGREES

CALL ANGLE(RF, C, 0, 0, XA, YA, ZA, XA, YA, ZA, 0, 0, D, THA)
CALL ANGLE(0, 0, 0, 0, 0, D, RF, 0, 0, XA, YA, ZA, THI)
CI = ABS(COS(THI))
THINC = 57.2957759 * THI
IF (ABS(THINC - 90, U) = 0, 01) 113, 113, 131
INDEX = THINC * FLOAT(NANG) / 180, 001
INDEX = INDEX + 1

CONTRIBUTION FROM NITROGEN ELASTIC SCATTERING

CALCULATE EN2, T2, INDEX AND KNDEX

CALL KINAM(1.0087, 14.003, 1.0087, 0, EN1, THA, EN2, EDUM)
KNDEX = EN2 * FLOAT(NENR) / ENMAX
KNDEX = KNDEX + 1
T2 = TIME(EN2, D2)
INDEX = (T1 + T2 - TMIN) * FLOAT(NTIME) / TRANG
INDEX = INDEX + 1
IF (INDEX > NBIN) INDEX = NBIN

DETERMINE NORMALIZED NITROGEN DIFFERENTIAL ELASTIC SCATTERING CROSS SECTION

CALL INTRPL(NNE, ENE, SIGNE, EN1, VSNE)
D0 141 I = I + 5
N = NNE(1)
D0 140 J = 1 + N
A(J) = ENE(I, J)
B(J) = NE(1, J)
141 CALL INTRPL(N, A, B, EN1, WORK(I))
CALL NORM(WORK, CONST)
CALL DISTR(5, WORK, THA, S1)
DESN = CONST * VSNE * S1 * AV0G/PI2/2, 0

CALL CALCULATE ATTN2

CALL INTRPL(NNT, ENT, SIGNT, EN2, VSNT)
CALL INTRPL(NOT, EOT, SIGOT, EN2, VSOT)
SIGAIR = AV0G * (ATMDN * VSNT + ATMDO * VSOT)
ATTN2 = EXP(-SIGAIR * D2)

CALL CALCULATE FUT AND FUF

FUT = 0, 0
D0 151 I = 1, 4
N = NUT(I)
D0 150 J = 1, N
A(J) = EUT(I, J)
150 B(J) = SIGUT(I, J)
151 CALL INTRPL(A, B, EN2, VSUT)
FUT = FUT + ATMU(I) * VSUT
FUT = FUT + AV0G
FUF = J, 0
D0 153 I = 1, 4
N = NUF(I)
D0 152 J = 1, N
A(J) = EUF(I, J)
B(J) = SIGUF(I,J)
CALL INTPL(N,A,B,EN2,VSUF)

FUF = FUF + ATMU(I) * VSUF
FUF = FUF + AVG

YLD = FS * CI + ATTN1 + ATTN2 * RF + RA * ATMDN * DESN * FUF * TRANS(FUT, PI1, RDISK, CI)
SUMN = SUMN + YLD * EN2
SUMTH = SUMTH + YLD * THINC
SUMD = SUMD + YLD
YSAT(INDEX) = YSCAT(INDEX) * YLD
YSANG(JINDEX) = YSANG(JINDEX) * YLD
YSEN(KINDEX) = YSEN(KINDEX) * YLD

CONTRIBUTION FROM NITROGEN INELASTIC SCATTERING

IF (M > 1.0 .EQ. 0.0) GE TO 209
DO 200 INI = 1, MN1

CHECK IF REACTION IS ENERGETICALLY ALLOWED, CALCULATE T2, INDEX AND KINDEX

CALL KINAM(1, 0087, 14, 003, 1, 0087, QNI(INI), EN1, THA, EN2, EDUM)
IF (E2 > 200, 200, 160

T2 = TINE(EN2, E2)
KINDEX = EN2 + FLOAT(NENR) / ENMAX
KINDEX = KINDEX + 1
INDEX = T1 + T2 + TMIN) * FLOAT(NTIME) / TRANG
INDEX = INDEX + 1
IF (INDEX .GT. NBIN) INDEX = NBIN

DETERMINE NORMALIZED NITROGEN DIFFERENTIAL INELASTIC SCATTERING CROSS SECTION (ISOTROPIC)

N = NN(MINI)
DO 161 J = 1, N
A(J) = ENI(INI, J)

B(J) = SIGNI(INI, J)
CALL INTPL(N, A, B, EN1, VSNI)
DIS = VSNI * AVDG / PI2 / 2.0

CALCULATE ATTN2

CALL INTPL(N1, EN1, SINT, EN2, VSNT)
CALL INTPL(NAT, EUT, SIGOT, EN2, VSOT)
SIGAIR = AVG * (ATMDN * VSNT * ATMD0 * VSOT)
ATTN2 = EXF (-SIGAIR * D2)

CALCULATE FUT AND FUF

FUT = 0.0
DO 163 I = 1, 4
N = NUT(I)
DO 162 J = 1, N
A(J) = EUT(I, J)

B(J) = SIGUT(I, J)
CALL INTPL(N, A, B, EN2, VSUT)
163 FUT = FUT + ATMU(I) * VSUT
FUT = FUF * AVDG
FUF = 0.0
C

CONTRIBUTION FROM OXYGEN ELASTIC SCATTERING

C

CALCULATE EN2, T2, INDEX AND KINDEX

C

09 CALL XNAM(1.0067, 15.995, 1.0087, 0., EN1, THA, EN2. EDUM)
KINDEX = EN2*FLCAT(NENR)/ENMAX
KINDEX = KINDEX*1
T2 = TIME(EN2, D2)
INDEX = (T2 - TMIN)*FLCAT(NTIME)/TRANG
INDEX = INDEX*1
IF (INDEX.GT. NBIN) INDEX = NBIN

C

DETERMINE NORMALIZED OXYGEN DIFFERENTIAL ELASTIC SCATTERING CROSS SECTION

C

CALL INTRPL(N2E, E2E, SIGOE, EN1, VSOE)
D0 211 I = 1, 5
N = NN2E(I)
D0 210 J = 1, N
A(J) = E2OE(I, J)
210 B(J) = SIGOE(I, J)

C

11 CALL INTRPL(N1, A, B, EN1, WORK(I))
CALL NRM(WORK, CONST)
CALL DISTR(5, WORK, THA, S1)
DES = CRNST*VSOE*S1*AVG/G*PI2/2.0

C

CALCULATE ATTN2

C

CALL INTRPL(NNT, ENT, SIGNT, EN2, VSNT)
CALL INTRPL(NLT, EUT, SIGOT, EN2, VSOT)
SIGAIR = AVG* (ATMDN*VSNT+ATMD0*VSOT)
ATTN2 = EXF(-SIGAIR*D2)

C

CALCULATE FUT AND FUF

C

FUT = 0.0
D0 221 I = 1, 4
N = NUT(I)
D0 220 J = 1, N
A(J) = EUT(I, J)
220 B(J) = SIGUT(I, J)
CALL INTRPL(NA,B,EN2,VSUT)
FUT=FLT+ATMU(I)*VSUT
FUT=FUT+AV0G
FUF=0.0
D0 223 I=1,4
NUF(I)
D0 222 J=1,N
A(J)=EUF(I,J)
CALL INTRPL(N,A,B,EN2,VSUF)
FUF=FUF+ATMU(I)*VSUF
FUF=FUF+AV0G

C
YLD=FS*CI*ATTN2*RF*RA*ATMD0*DESO*FUF*TRANS(FUT,P11,RDISK,C1)
1/D1/01/D2/D2/FUT
SUMNE=SUMNE+YLD*EN2
SUMTH=SUMTH+YLD*THINC
SUMD=SUMD+YLD
YSCAT(INDEX)=YSCAT(INDEX)+YLD
YSANG(JINDEX)=YSANG(JINDEX)+YLD
YSEN(KINDEX)=YSEN(KINDEX)+YLD

C
CONTRIBUTION FROM OXYGEN INELASTIC SCATTERING
IF(MO1.EQ.0) GO TO 900
D0 300 I=1,M01

C
CHECK IF REACTION IS ENERGETICALLY ALLOWED. CALCULATE T2, INDEX AND KINDEX
CALL *INAM(1,0087,15.995,1.0087,301(I01),EN1,THA,EN2,EDUM)
IF(E<2) 300,300,290

T2=TIME(EN2,D2)
KINDEX=EN2*FL0AT(NENER)/ENMAX
KINDEX=KINDEX+1
INDEX=INDEX+1
IF(INDEX.GT.0) INDEX=NBIN

C
DETERMINE NORMALIZED OXYGEN DIFFERENTIAL INELASTIC SCATTERING CROSS SECTION (ISOTROPIC)
N=MO1(I01)
D0 291 J=1,N
A(J)=E2I(I01,J)
B(J)=SIG0I(I01,J)
CALL INTRPL(N,A,B,EN1,VS01)
DIS0=VS0I*AV0G/P12/2.0

C
CALCULATE ATTN2
CALL INTRPL(N,T,ENT,SIGN1,EN2,VSNT)
CALL INTRPL(N,T,SIGN2,EN2,VSNT)
SIG1=AV0G*(AMDN+VSNT+ATMD0*VSNT)
ATTN2=EXP(-SIG1*R*D2)

C
CALCULATE FUT AND FUF
FUT=0.0
D0 293 I=1,4
N=NUT(I)
D0 292 J=1,N
A(J)=EUT(I,J)
292 B(J)=SIBT(I,J)
CALL INTRPL(Y, A, B, EN2, VSUT)
293 FUT=FUT+ATHU(I)*VSUT
FUT=FUT+AV0G
FUZ=FUZ,0
D0 293 1=1,N
N=NUF(I)
D0 294 J=1,N
A(J)=UF(I,J)
294 B(J)=SIBJF(I,J)
CALL INTRPL(Y, A, B, EN2, VSUF)
295 FUZ=FUF+ATMU(I)*VSUF
FUZ=FUF+AV0G
C
YLD=FS*CI*ATN1*ATN2*RF*RA*ATMD*DIS0*FUF*TRANS(FUT, PI1, RDISK, CI)
1/D1/D1/D2/D2/FUT
SUMNE=SUMNE+YLD*EN2
SUMNTN=SUMNTN+YLD*THINC
SUMD=SUMD+YLD
YSCAT(INDEX)=YSCAT(INDEX)+YLD
YSANG(INDEX)=YSANG(INDEX)+YLD
YSEN(INDEX)=YSEN(INDEX)+YLD
C 0 CONTINUE
C
400 CONTINUE
CALL SSNCH1(K1)
IF(K1.EQ.1)G0 TO 905
IF(NHIST.EQ.NHIST1) 113,905,905
C
C CALCULATE HISTORY AVERAGES AND MULTIPLY BY AIR PARAMETER SPACE
C VOLUME
C
905 VOLU=2.0*RAMAX*ZAMAX*PI2
D0 906 I=1,NANG
296 YSANG(I)=VOLU*YSANG(I)/FLOAT(NHIST)
D0 907 I=1,NEVR
297 YSEN(I)=VOLU*YSEN(I)/FLOAT(NHIST)
D0 910 I=1,NSIN
910 YSCAT(I)=VOLU*YSCAT(I)/FLOAT(NHIST)
C
C CALCULATE RATIO(I), RANG(I), REN(I), TOTTRAT, FT1 AND FT2
C
T0TRAT=0,0
D0 1000 I=1,NSIN
RATI0(I)=YSCAT(I)/YDIR
1000 T0TRAT=T0TRAT+RATI0(I)
D0 1001 I=1,NANG
1001 RANG(I)=YSANG(I)/YDIR
D0 1002 I=1,NEVR
1002 REN(I)=YSEN(I)/YDIR
FT2=RATI0(NSIN)/T0TRAT
FT1=1.0-FT2
C
C CALCULATE AVERAGE EN2 AND THINC

-78-
EN2V = SUM NE / SUMD
THINCv = SUM NT / SUMD

C WRITE RESULTS

WRITE(5, 1900) YDIR
1 400 FORMAT(4HYDIR/E16.4)
WRITE(5, 2000) TMIN, DT, FREE
2 30 FORMAT(12HTMIN, DT, FREE/E10.4)
WRITE(5, 2020) MHIST
2 20 FORMAT(6HMHIST = , I6)
WRITE(5, 4000)
4 00 FORMAT(7HENEK(1))
WRITE(5, 3000) (ENE(I), I=1, NENR)
WRITE(5, 4010)
4 01 FORMAT(6HREN(I))
WRITE(5, 3000) (REN(I), I=1, NENR)
WRITE(5, 4002)
4 02 FORMAT(7HTHIC(I))
WRITE(5, 3000) (THIC(I), I=1, NANG)
WRITE(5, 4003)
4 03 FORMAT(7HRANG(I))
WRITE(5, 3000) (RANG(I), I=1, NANG)
WRITE(5, 2001)
2 01 FORMAT(4HT(I))
WRITE(5, 3000) (T(I), I=1, NTIME)
3 00 FORMAT(4E10.4)
WRITE(5, 2002)
2 02 FORMAT(8HRAT(I))
WRITE(5, 3000) (RAT(I), I=1, N8 IN)
WRITE(5, 2003) TOTRAT, F1, F2
2 03 FORMAT(14HTOTRAT, F1, F2/E10.4)
WRITE(5, 2004) EN2V, THINCv
2 04 FORMAT(11HEN2V, THINCV/E10.4)
WRITE(5, 2005)
2 05 FORMAT(5H-----)
C
IF(K1, EQ, 1) PAUSE
GO TO 1
END
FUNCTION TIME(EIN, R)
E = EIN / 939.549
IF(E, LT, 0.0) GO TO 1
V = 0.0
GO TO 2
1 V = (+, 2997925E+11) * SQRT(AHS((1.0 - (1.0/(E+1.0)/(E+1.0))))
TIME = V
2 RETURN
END
SUBROUTINE KINAM(A1, A2, A3, O, E1, TH3, E31, E32)
C
W1 = 931.473 * A1
W2 = 931.473 * A2
W3 = 931.473 * A3
W4 = W1 - W2 - W3 - W4
EF = (1.0 * (W1/W2) - (0.5 * W2/W2))
EB = (2.0 * (W1/(W2 - W3)) - (0.5 * (W2 - W3)))
IF(E1 - EF) 1, 1, 2
1 E31 = 0.0
11 E32 = 0.0
-79
G0 T2 6
2 C=G0S(T43)
 A=2.0*(X3+W4+E1+Q)
 B=2.0*E1*(W1-W4-Q)-(2.0*X4+Q+Q)
 D=E1*(E1+2.0+11)*C+C
 TERM=(8*3-2.0*X3*A+B+4.0*X3*W3*D)*E1*(E1+2.0+W1)
 IF(TERM) 1,1,3
3 DEN=A*A-4.0*D
 U=(4.0+W3*D-A*B)/DEN
 V=2.0*C*SQR(ABS(TERM))/DEN
 E31=C+V
 IF(E1=EB) 4,4,5
4 IF(TH3=1.5707963) 41,11,11
41 E32=U-V
 G0 T2 6
5 E32=E31
6 RETURN:
 SUBROUTINE ANGLE(X1H,Y1H,Z1H,X1T,Y1T,Z1T,X2H,Y2H,Z2H,X2T,Y2T,Z2T)
 V1=SIN(X1H-X1T)*(Y1H-Y1T)+(Y1H-Y1T)*(Z1H-Z1T)+(Z1H-Z1T)*(Z1H
1-Z1T))
 V2=SIN(X2H-X2T)*(Y2H-Y2T)+(Y2H-Y2T)*(Z2H-Z2T)+(Z2H-Z2T)*(Z2H
1-Z2T))
 D0=(X1H-X1T)*(X2H-X2T)+(Y1H-Y1T)*(Y2H-Y2T)+(Z1H-Z1T)*(Z2H-Z2T)
 CTH=D0/V1/V2
 TH=ARCCOS(CTH,2)
 RETURN:
 SUBROUTINE NORM(X,C)
 DIMENSION N(5)
 SUM=0.0
 DO 1 I=1,36
 TH=TH+1.4159*FLAT(I)/36.0
 CALL DISTR(5,w,TH,S)
1 SUM=SUM+S*SIN(TH)
 SUM=SUM/0.872664*SUM
 C=2.0/ SUM
 RETURN:
 SUBROUTINE DISTR(NW,W,TH,V)
 DIMENSION W(5)
 V=1.0
 IF(NW.EQ.0) GO TO 4
 DO 2 I=1,NW
2 V=V+W(I)*POLLY(2,I,TH)
 IF(V) 3,4,4
3 V=0,0
 RETURN:
 FUNCTION POLLY(I,p,N,ANGLE)
 X = ANGLE
 G0 T2(10,11,12),13P
 X = .617453693*X
 X = COS(X)
 IF(N.EQ.1) 1,2,3
1 POLLY = 1.0
 G0 T2 100
2 POLLY = X

-80-
GO TO 100
100 RETURN
END
SUBROUTINE INTRPL(N,XT,YT,X,Y)
DIMENSION XT(N),YT(N)
IF(X=XT(1)) 1,3,4
1 WRITE(1,2)
2 FORMAT(B8,1X,RANG,ERR)
PAUSE
3 Y=YT(1)
GO TO 24
4 IF(X=XT(N)) 7,5,1
5 Y=YT(N)
GO TO 24
7 I=0
J=N
8 K=.5*FLOAT(J-I)+.1
K=K+1
IF(X=XT(K)) 9,10,11
9 J=K
GO TO 12
10 Y=YT(K)
GO TO 24
11 I=K
12 IF(J=I-1) 13,13,8
13 I=J
J=I-1
DEN=XT(J)-XT(I)
C1=(XT(J)*YT(I)-XT(I)*YT(J))/DEN
C2=(YT(J)-YT(I))/DEN
Y=C1+C2*X
24 RETURN
END
FUNCTION ARCCOS(X,K)
ARCCOS=1.5707963
IF(ABS(X).GT.1.999999) X=.999999*X/ABS(X)
IF(X.EQ.0.0) ARCCOS=ATAN(SQRT(ABS(1./X/X-1.)))
IF(X.LT.0.0) ARCCOS=3.1415926-ARCCOS
GO TO (100,200),K
100 ARCCOS=ARCCOS*.57295795
200 RETURN
END
FUNCTION TRANS(F,P,R,C)
V=F/P/R/C
IF(V=.001) 1,1,2
1 TRANS=V-(.5*V*V)
GO TO 3
2 TRANS=1.0-EXP(-V)
3 RETURN
END
FUNCTION EXP(X)
IF(X) 1,1,3
1 IF(X. LT.-70.0) X=-70.0
IF(X. GT.-1.0E-04) 30 TO 2
30 RETURN
END