NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-34

Graphical Representation of
Neutron Differential Cross Section Data
for Reactor Dosimetry Applications

by

Donald L. Smith

June 1977

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-34

GRAPHICAL REPRESENTATION OF NEUTRON DIFFERENTIAL CROSS SECTION DATA FOR REACTOR DOSIMETRY APPLICATIONS

by

Donald L. Smith
June 1977

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa
Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame
The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.
ANL/NDM-34

GRAPHICAL REPRESENTATION OF NEUTRON
DIFFERENTIAL CROSS SECTION DATA FOR
REACTOR DOSIMETRY APPLICATIONS

by

Donald L. Smith
June 1977

In January 1975, the research and development functions of the former U.S. Atomic Energy Commission were incorporated into those of the U.S. Energy Research and Development Administration.

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
U.S.A.
NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in the field of microscopic nuclear data. The primary objective is the dissemination of information in the comprehensive form required for nuclear technology applications. This Series is devoted to: a) measured microscopic nuclear parameters, b) experimental techniques and facilities employed in data measurements, c) the analysis, correlation and interpretation of nuclear data, and d) the evaluation of nuclear data. Contributions to this Series are reviewed to assure technical competence and, unless otherwise stated, the contents can be formally referenced. This Series does not supplant formal journal publication but it does provide the more extensive information required for technological applications (e.g., tabulated numerical data) in a timely manner.
TABLE OF CONTENTS

ABSTRACT ... 3

I. INTRODUCTION ... 4

II. CONCEPT AND EXAMPLES 5

III. SUMMARY .. 8

REFERENCES .. 9

FIGURES .. 11
GRAPHICAL REPRESENTATION OF NEUTRON DIFFERENTIAL CROSS SECTION DATA FOR REACTOR DOSIMETRY APPLICATIONS*

by

Donald L. Smith

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
U.S.A.

ABSTRACT

The need for improved understanding of the relationships between available differential and integral data for neutron reactions used in reactor dosimetry has prompted investigation of a method for graphically representing experimental differential data in a form which appears to be quite useful for dosimetry applications. The method involves weighting the differential cross sections by spectral functions and plotting these values. Graphs of this form clearly indicate which differential data are important for spectrum unfolding applications. Simultaneous plots of experimental and evaluated differential cross sections—weighted by spectral functions—provide a means for comparing evaluations from the point of view of their impact on specific dosimetry applications.

*This work was sponsored by the U.S. Energy Research and Development Administration.
I. INTRODUCTION

An important goal of current research in the field of reactor dosimetry is the elimination of disparities in the results of differential and integral measurements for neutron reactions commonly used in dosimetry by the activation method. Good agreement between measured spectrum-average cross sections and those computed from evaluated differential reaction cross sections and spectral information for various well-established benchmark fields is a prerequisite to application of this method in dosimetry for less-well-known fields (e.g., those in large power reactors).

Considerable progress has been made in this area during the past few years. Several well-characterized benchmark fields have been developed and an international effort has been undertaken to intercompare the results of measurements at these facilities (1). Similarly, there has been a great deal of progress in improving the knowledge of the differential cross sections. This has come about as a result of recent experimental activity and improved evaluation procedures in this area.

Consistency of integral and differential results to within 2-5% is sought (1). It appears that this goal is realistic (1,2), but it has not yet been achieved (3). The relevant question now is: "Where do we go from here?" It is clear that improvements are required in measurements of microscopic integral and differential cross sections as well as in the characterization of the benchmark fields utilized for cross-section data validation. However, because of the considerable cost involved in funding such an effort, careful planning is needed to define the scope and accuracy of the requisite experimental work so that resources will not be wasted on unnecessary programs.

Recently, an attempt was made to examine relationships between microscopic integral and differential cross sections with the objective of
developing a simple procedure for determining where emphasis should be directed in the measurement of differential cross sections (4). The present report deals with results from a continuing investigation of this topic. In particular, a method is described for examining the quality of the experimental differential data base and existing evaluations of these data for neutron activation reactions from the point of view of specific dosimetry applications. The method involves plotting both experimental and evaluated results after weighting the cross sections by functions representing neutron spectra of interest for applications. This graphical approach has been used before for representation of evaluated data, but it does not appear to have been used for the examination of experimental results. Several examples are presented in this report to illustrate the method.

II. CONCEPT AND EXAMPLES

Traditionally, the compilation and evaluation of differential experimental data has been approached almost entirely from the point of view of pure microscopic cross sections; as an example, Fig. 1 shows results from a recent analysis of the $^{115}\text{In}(n;n')^{115m}\text{In}$ reaction (5). This type of graphical representation emphasizes the relative importance of various energy regions from the point of view of a uniform neutron field (equal numbers of neutrons per unit energy interval at all energies, $\phi(E) = \text{constant}$) and it is useful for monoenergetic-neutron considerations.

However, plots of (E_i, σ_i) pairs and $\sigma(E)$ curves are not useful for examining the differential data from the point of view of realistic spectra ($\phi(E) \neq \text{constant}$). It is suggested that a superior method for presentation of differential data for reactor applications is to plot pairs $(E_i, \sigma_i \phi(E_i))$ and curves $\sigma(E)\phi(E)$ over the range where $\sigma \phi$ is not essentially zero. As an example, Fig. 2 presents the same differential data for $^{115}\text{In}(n;n')^{115m}\text{In}$ as
appeared in Fig. 1 except that the cross sections are weighted by two benchmark spectral functions: i) thermal-neutron fission of ^{235}U (6) and, ii) the CFRMF spectrum (7). From the point of view of these two benchmark fields, Fig. 2 provides a great deal more useful information than Fig. 1 about the quality of the available experimental data and on how adequately the evaluations represent these data in the regions of importance. While it is fission driven, the CFRMF spectrum is considerably softer than a pure ^{235}U fission spectrum and, therefore, tests the differential data for the $^{115}\text{In}(n,n')^{115m}\text{In}$ reaction below ~1 MeV to a greater extent. Since the spectrum-average cross section is the integral of $\sigma \phi$ for a normalized ϕ, it is clear that the existing differential data define the shape of the response functions with relatively little ambiguity for both ^{235}U fission and CFRMF except possibly in the range $E_n = 1 - 2.5$ MeV where the differences are large enough to introduce noticeable uncertainty. The recent evaluation of Smith (5) provides a significant improvement in integral-differential comparisons over ENDF/B-IV (8). Naturally, it must be kept in mind that integral-differential comparisons depend on the accuracy of the neutron spectrum representation for the fields in question as well as on the quality of the microscopic integral and differential cross section data.

It should be pointed out that plots such as those in Fig. 2 will not indicate problems in overall normalization which might result from improper neutron fluence measurement or use of incorrect decay data—unless these errors apply to isolated data sets while most of the experimental data are properly normalized. It is imperative that integral and differential measurements must utilize consistent decay data and, if possible, consistent fluence normalization techniques. Otherwise, intercomparison is meaningless and shape effects become hopelessly inseparable from overall normalization considerations.
Since the pure fission spectra are always harder than the corresponding fission driven reactor spectra, it is clear from Fig. 2 that there is no real need for additional differential measurements on the \(^{115}\text{In}(n,n')^{115}\text{In}\) reaction above \(\sim 6\ \text{MeV}\) for fission reactor applications.

The \((n,p)\) reactions for \(^{46,47,48}\text{Ti}\) were recently evaluated by Philis et al. (9). These reactions have higher effective thresholds than the \(^{115}\text{In}(n,n')^{115}\text{mIn}\) reaction and respond to the high-energy regions of fission-driven neutron spectra. Therefore, plots of \(\sigma\Phi\) for various such systems differ little from each other in shape. Consideration of results for a \(^{235}\text{U}\) fission spectrum is sufficient to investigate shape effects.

The current status for the \(^{46}\text{Ti}(n,p)^{46}\text{Sc}\) reaction is summarized in Figs. 3 and 4. Clearly the situation is unacceptable. There are several differential data sets covering the region of largest response \((E_n = 4 - 10\ \text{MeV})\), but there are large discrepancies. Approximately half of the response region \((E_n = 3.7 - 5\ \text{MeV}\) and \(7 - 10\ \text{MeV}\)\) is covered by only one data set. A small- but not negligible-portion of the response comes from below \(\sim 3.7\ \text{MeV}\) and no experimental data cover this region. There is a need for more differential measurements in the region from \(3 - 10\ \text{MeV}\) for this important dosimetry reaction.

If one apparently discrepant data set is ignored, it can be seen from Figs. 6 and 7 that the \(^{47}\text{Ti}(n,p)^{47}\text{Sc}\) reaction is reasonably well defined by differential data over the important response region of \(1 - 10\ \text{MeV}\) for fission neutron systems. Additional measurements above \(6\ \text{MeV}\) would be desirable since this region is covered by only one differential data set.

The situation for the \(^{48}\text{Ti}(n,p)^{48}\text{Sc}\) reaction is quite poor. The large differences in the ENDF/B-IV (8) and Philis et al. (9) evaluations are apparent in Fig. 7, but are truly accentuated in Fig. 8. Since there is essentially only one differential data set covering the most important response
region for 48Ti(n,p)48Sc, new differential measurements are certainly needed for this reaction. The region of emphasis for fission reactor applications is 5 – 13 MeV.

III. SUMMARY

The proposed method for plotting experimental and evaluated differential cross sections appears to offer a convenient means for comparison of experimental and evaluated results from the point of view of reactor dosimetry. Furthermore, weaknesses in the existing experimental data base and the evaluations are emphasized by this approach. The present report presents examples which include only partially–moderated fission neutron spectra and threshold reactions. The method is also applicable for reactions with no threshold and for soft neutron spectra characteristic of heavily moderated systems or hard neutron spectra characteristic of proposed fusion devices or medical irradiation facilities. The need for optimal use of available research funds in the development of nuclear data for technological applications provides a strong justification for the use of the present approach and other analytical techniques which can help to define specific nuclear data needs.
REFERENCES

1. The reader may refer to various articles in Nuclear Technology, Vol. 25 (1975) which describe several benchmark fields as well as the ILRR Program which is a cooperative effort on the part of several laboratories to intercompare results from measurements in these fields.

5. Donald L. Smith, "Evaluation of the 115In(n;${n'}$)115In Reaction for the ENDF/B-V Dosimetry File," ANL/NDM-26, Argonne National Laboratory (1976).

FIGURE CAPTIONS

Fig. 1. Plot of experimental data (Ref. 5) and the ENDF/B-IV (Ref. 8) and Smith (Ref. 5) evaluations for the differential cross section of the 115In(n,n')115mIn reaction.

(ANL Neg. No. 116-77-392)

Fig. 2. Plots of $\sigma \phi$ for the 115In(n,n')115mIn reaction computed using the spectrum corresponding to thermal-neutron fission of 235U (Ref. 6) and the CFRMF spectrum (Ref. 7). Experimental differential data obtained from Ref. 5. Differential evaluations are those of ENDF/B-IV (Ref. 8) and Smith (Ref. 5).

(ANL Neg. No. 116-77-387)

Fig. 3. Plot of experimental data (Ref. 9) and the ENDF/B-IV (Ref. 8) and Philis et al. (Ref. 9) evaluations for the differential cross section of the 46Ti(n,p)46Sc reaction.

(ANL Neg. No. 116-77-386)

Fig. 4. Plot of $\sigma \phi$ values for the 46Ti(n,p)46Sc reaction computed using the spectrum corresponding to thermal-neutron fission of 235U (Ref. 6). Experimental differential data obtained from Ref. 9. Differential evaluations are those of ENDF/B-IV (Ref. 8) and Philis et al. (Ref. 9).

(ANL Neg. No. 116-77-388)

Fig. 5. Similar to Fig. 3 except that the reaction considered is 47Ti(n,p)47Sc.

(ANL Neg. No. 116-77-393)

Fig. 6. Similar to Fig. 4 except that the reaction considered is 47Ti(n,p)47Sc.

(ANL Neg. No. 116-77-390)

Fig. 7. Similar to Fig. 3 except that the reaction considered is 48Ti(n,p)48Sc.

(ANL Neg. No. 116-77-391)
Fig. 8. Similar to Fig. 4 except that the reaction considered is $^{48}\text{Ti}(n,p)_{p}$.

(ANL Neg. No. 116-77-389)
$^{115}_{95}$In($N,N')^{115}_{95}$In

Fig. 1

\[\sigma, \text{ Relative} \]

\[E_N, \text{ MeV} \]
$^{115}_{\text{IN}}(N,N')^{115}_{\text{Mn}}$
$^{46}\text{Tl}(N,P)^{46}\text{Sc}$

σ, Relative

E_N, MeV

ENDF/B-IV

Phillis et al.
$^{46}\text{Ti}(N,P)^{46}\text{Sc}$

U-235 Fission

σ_ϕ, Relative

E_N, MeV

Phillis et al.

ENDF/B-IV
$^{47}\text{Ti} (N, P)^{47}\text{Sc}$

The graph shows the cross-section (σ, Relative) as a function of the neutron energy (E_N, MeV) for the reaction $^{47}\text{Ti} (N, P)^{47}\text{Sc}$. The data points are compared with the models ENDF/B-IV and Phillis et al.
\[{^{47}Ti(N,P)^{47}Sc} \]

![Graph showing the cross-sections for U-235 fission with two data sets: ENDF/B-IV and Phillis et al.](Image of the graph)
$^{48}\text{Ti}(N,P)^{48}\text{Sc}$

![Graph showing the cross-sections for the reaction $^{48}\text{Ti}(N,P)^{48}\text{Sc}$ as a function of neutron energy (E_N, MeV). The graph compares the data from Phillips et al. and the ENDF/B-IV evaluation.](image-url)
$^{48}\text{Ti}(N,P)^{48}\text{Sc}$

E_N, MeV

$\sigma\Phi$, Relative

U-235 Fission

Philis et al.

ENDF/B-IV

-20-