ANL/NDM-38

THE ALPHA AND SPONTANEOUS FISSION HALF-LIVES OF 242Pu

by

J. W. Meadows

December 1977

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
NUCLEAR DATA AND MEASUREMENTS SERIES

ANL/NDM-38

The Alpha and Spontaneous-Fission Half-Lives of 242Pu

by

J.W. Meadows

December 1977

ARGONNE NATIONAL LABORATORY,
ARGONNE, ILLINOIS 60439, U.S.A.
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa
Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame
The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.
ANL/NDM-38

THE ALPHA AND SPONTANEOUS FISSION
HALF-LIVES OF 242Pu

by

J. W. Meadows

December 1977

In October 1977, the U. S. Energy Research and Development Agency (ERDA) was incorporated into the U. S. Department of Energy. The research and development functions of the former U. S. Atomic Energy Commission had previously been incorporated into ERDA in January 1975.

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
USA
NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in the field of microscopic nuclear data. The primary objective is the dissemination of information in the comprehensive form required for nuclear technology applications. This Series is devoted to: a) measured microscopic nuclear parameters, b) experimental techniques and facilities employed in measurements, c) the analysis, correlation and interpretation of nuclear data, and d) the evaluation of nuclear data. Contributions to this Series are reviewed to assure technical competence and, unless otherwise stated, the contents can be formally referenced. This Series does not supplant formal journal publication but it does provide the more extensive information required for technological applications (e.g., tabulated numerical data) in a timely manner.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT.</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION.</td>
<td>2</td>
</tr>
<tr>
<td>II. EXPERIMENTAL PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>4</td>
</tr>
<tr>
<td>A. The Alpha Half-Life</td>
<td>4</td>
</tr>
<tr>
<td>B. The Spontaneous Fission Half-Life</td>
<td>5</td>
</tr>
<tr>
<td>IV. DISCUSSION.</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS.</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES.</td>
<td>7</td>
</tr>
<tr>
<td>TABLES.</td>
<td>8</td>
</tr>
<tr>
<td>FIGURES</td>
<td>11</td>
</tr>
</tbody>
</table>
THE ALPHA AND SPONTANEOUS FISSION HALF-LIVES OF $^{242}_{\text{Pu}}$*

by

J. W. Meadows
Argonne National Laboratory

ABSTRACT

The alpha and spontaneous fission half-lives of $^{242}_{\text{Pu}}$ are measured relative to the alpha half-life of $^{239}_{\text{Pu}}$. If the alpha half-life of $^{239}_{\text{Pu}}$ is 24290 ± 70 y, the $^{242}_{\text{Pu}}$ alpha half-life is $(3.736 \pm .029) \times 10^5$ y and the spontaneous fission half-life is $(6.79 \pm .04) \times 10^{10}$ y.

*This work supported by the U. S. Department of Energy.
I. INTRODUCTION

The early measurements of the 242Pu alpha half-life by Thompson et al.\(^1\) and by Asaro\(^2\) gave 5×10^5 y and 9×10^5 y respectively. Later measurements\(^3-8\) with better accuracies clustered around 3.75×10^5 y. However, even the more recent values\(^6-8\) differ by amounts that are large compared to their assigned errors. There are only a few measurements of the spontaneous fission half-life\(^3,5,9,10\) and the extreme values differ by nearly 15%.

In the course of a program of fission cross section ratio measurements a group of samples were prepared from high purity 242Pu and from mixtures of $\sim90\%$ 242Pu and $\sim9\%$ 239Pu. This provided an opportunity to compare the 242Pu alpha and spontaneous fission half-lives to the alpha half-life of 239Pu. Since the 239Pu alpha half-life is well known\(^11\) this method should be capable of yielding accurate values for the 242Pu half-lives. The conditions for the measurement were good. The isotopic composition of these samples was well determined, the alpha activities of the 242Pu and 239Pu in the mixed samples were roughly equal, and their alpha decay energies were sufficiently different so the two alpha groups could be easily separated. This report contains the results of that comparison.

II. EXPERIMENTAL PROCEDURES

High purity 242Pu and 239Pu were obtained from the Research Materials Collection at Oak Ridge National Laboratory. The isotopic analysis of the 242Pu used in this measurement was that supplied with the material and is the same as that given for sample 42 in Table 1. The 239Pu used to prepare the mixed samples was 99.998% 239Pu.

The samples were prepared by electro-deposition of the plutonium onto molybdenum plates followed by conversion to the oxide. The deposits were 2.5 cm in diameter and had area densities ranging from ~40 to ~70 µg Pu/cm\(^2\). The
mixed samples were analyzed for isotopic composition after completion of the measurements. The results are listed in Table 1.

The samples were alpha counted in a low geometry counter with a geometry factor of 939 ± 3. A typical alpha spectrum is shown in Fig. 1. Although the resolution of the surface barrier detector used in the counter was 22 keV the principal components of the 242Pu alpha peak cannot be resolved due to the thickness of the deposits. However, separation of the 242Pu and 239Pu alpha groups is good and the correction for the tail of the 239Pu peak that extends under the 242Pu peak is small.

The spontaneous fissions were counted in an ionization chamber of the type previously described. A fission spectrum is shown in Fig. 2. The electrode separation of the ion chamber is much less than the fission fragment range so the usual two-humped fission fragment spectrum is not observed. However there is good separation between the alphas and the fissions. The number of fissions lost below the discriminator bias level was estimated by linear extrapolation to zero pulse height. The correction factor for the fissions not observed due to the finite deposit thickness was estimated by

$$S = 1 + \frac{T}{2r}$$ \hspace{1cm} (1)

where T is the deposit thickness in terms of mg Pu/cm2 and r is the average range of the fission fragments in the deposit expressed as mg Pu/cm2. Since the deposit is an oxide the value of r is considerably less than the range in the metal. The value used, 4.7 mg/cm2, was actually obtained from measurements on a series of uranium oxide deposits. The value for plutonium oxide should be a little different but since the loss is only $\sim 0.5\%$ the use of the uranium value introduces no significant error.
III. RESULTS

A. The Alpha Half-life

Inspection of Fig. 1 shows that the alpha spectrum consists of three well separated peaks, so determining the relative peak areas is fairly straightforward. The tail of the central peak does extend under the low energy peak but the correction is small. It is largest for the $^{242}\text{Pu} + ^{239}\text{Pu}$ samples and also depends on the deposit thickness. For these samples it was always $<1\%$.

The high energy peak is almost entirely due to ^{238}Pu. It also contains any alphas from ^{241}Am formed by β-decay of ^{241}Pu. The low energy peak and the middle peak are almost entirely due to ^{242}Pu and ^{239}Pu respectively but there is some interference from other plutonium isotopes. Some of the very weak ^{239}Pu alpha groups fall into the ^{242}Pu peak but they only amount to 0.08%. The ^{241}Pu alphas also fall into this peak but the concentration is low and the alpha half-life is long so this contribution is only 0.02%. The ^{240}Pu alphas fall into the middle peak. This is the most important interference and amounts to ~4%.

When all the interferences are considered explicitly the ^{242}Pu alpha half-life is

$$t_\alpha(242) = RF(242)\left[\frac{P(1 + R) - RF(239)}{t_\alpha(239)} + \frac{RF(240)}{t_\alpha(240)} - \frac{RF(241)}{t_\alpha(241)}\right]^{-1}$$

(2)

where R is the ratio of the area of the middle peak to the low energy peak, F is the mole fraction of the designated isotope, t_α is its alpha half-life and P is the fraction of ^{239}Pu alphas falling into the middle peak. For this sample P is 0.9992. The half-lives used are listed in Table 2. The value for the ^{239}Pu half-life is the one recommended by Lemmel11. A recent measurement by Jaffey et al16 is in good agreement. Values of R for samples 44 and 50 were based on the average of several measurements. The results for the ^{242}Pu half-life were
Sample 44 \[(3.757 \pm .040) \times 10^5 \text{ y.} \]
Sample 50 \[(3.715 \pm .028) \times 10^5 \text{ y.} \]
Unweighted Av. \[(3.736 \pm .029) \times 10^5 \text{ y.} \]

The principal sources of error are listed in Table 3. The error in R is based on the scatter of a number of determinations. It is larger than the statistical error and is the principal uncertainty in the measurement.

B. The Spontaneous Fission Half-life

The measurement of the spontaneous fission half-life, \(t_{SF} \), is essentially a measurement of the spontaneous fission decay rate relative to the alpha decay rate as shown in the following equation.

\[
t_{SF}(242) = t_{\alpha}(242) \frac{G(C_\alpha - B_\alpha)}{(C_{SF} + D - B_{SF})S}
\]

where \(C_\alpha \) is the count rate in the low energy alpha peak, \(G \) is the alpha counter geometry factor, \(B_\alpha \) is the count rate in the low energy peak due to other isotopes, \(C_{SF} \) is the spontaneous fission count rate, \(B_{SF} \) is the number of spontaneous fissions due to other isotopes, \(D \) is the correction for counts below the discriminator level and \(S \) is the factor used to correct for losses in the plutonium deposit. Spontaneous fission rates were measured for samples 42 and 49. There was no isotopic analysis for sample 49 but it was known to be similar to that of samples 44 and 50. This is confirmed by the alpha spectrum. In any case, once the \(^{242}\text{Pu}\) alpha half-life is known, the isotopic analysis is needed only to calculate the minor corrections \(B_\alpha \) and \(B_{SF} \) which were less than 0.1%.

The results for the \(^{242}\text{Pu}\) spontaneous fission half-life was

Sample 42 \[(6.78 \pm .06) \times 10^{10} \text{ y.} \]
Sample 49 \[(6.80 \pm .06) \times 10^{10} \text{ y.} \]
Unweighted Av. \[(6.79 \pm .05) \times 10^{10} \text{ y.} \]

The principal sources of error are listed in Table 3.
IV. COMMENTS

The present values of the 242Pu alpha and spontaneous fission half-lives are compared with other measurements$^{3-10}$ in Table 4. The early results1,2 are not included since their errors are large. The values of the 242Pu half-lives which were measured relative to the half-lives of other plutonium isotopes were adjusted by means of the appropriate half-life given in Table II. The errors are those given by the original authors.

The only other measurement made relative to 239Pu gave $(3.851 \pm 0.016) \times 10^5$ y6 which is in rather poor agreement with the present value of $(3.736 \pm 0.025) \times 10^5$ y. However the present value is consistent with the recent calorimetric value of $(3.763 \pm 0.009) \times 10^5$ y and also with the unweighted mean of all values $((3.759 \pm 0.033) \times 10^5$ y). The unweighted mean of all values of the spontaneous fission half-life is $(6.86 \pm 0.18) \times 10^{10}$ y while the weighted mean is $(6.78 \pm 0.04) \times 10^{10}$ y. Either of these is in good agreement with the present value of $(6.79 \pm 0.05) \times 10^{10}$ y.

ACKNOWLEDGEMENTS

The author is indebted to Donald J. Rokop for the isotopic analyses and to G. H. Kucera for preparing the samples.
REFERENCES

TABLE 1. The Isotopic Composition of the Samples in Mole %

<table>
<thead>
<tr>
<th>Isotope</th>
<th>42</th>
<th>44</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>0.006%</td>
<td>0.007%</td>
<td>0.006%</td>
</tr>
<tr>
<td>239Pu</td>
<td>0.008</td>
<td>9.174</td>
<td>9.250</td>
</tr>
<tr>
<td>240Pu</td>
<td>0.107</td>
<td>0.097</td>
<td>0.102</td>
</tr>
<tr>
<td>241Pu</td>
<td>0.137</td>
<td>0.099</td>
<td>0.097</td>
</tr>
<tr>
<td>242Pu</td>
<td>99.742</td>
<td>90.622</td>
<td>90.546</td>
</tr>
</tbody>
</table>

TABLE 2. The Alpha and Spontaneous Fission Half-lives of the Plutonium Isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Alpha</th>
<th>Spontaneous Fission</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>$87.71 \pm 0.03 \text{ y}^a$</td>
<td>$5.2 \times 10^{10} \text{ y}^d$</td>
</tr>
<tr>
<td>239Pu</td>
<td>$24290 \pm 70 \text{ y}^b$</td>
<td>$5.4 \times 10^{14} \text{ y}^d$</td>
</tr>
<tr>
<td>240Pu</td>
<td>$6537 \pm 10 \text{ y}^c$</td>
<td>$1.33 \times 10^{11} \text{ y}^d$</td>
</tr>
<tr>
<td>241Pu</td>
<td>$6.04 \times 10^5 \text{ y}^d$</td>
<td></td>
</tr>
<tr>
<td>242Pu</td>
<td>$(3.736 \pm 0.25) \times 10^5 \text{ y}^e$</td>
<td>$(6.79 \pm 0.05) \times 10^{10} \text{ y}^e$</td>
</tr>
</tbody>
</table>

^aRef. 13.
^bRef. 11.
^cRef. 14.
^dRef. 15.
^eThis Experiment.
<table>
<thead>
<tr>
<th>Quantity</th>
<th>% Error in Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Half-life</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>F(242)</td>
<td>0.1</td>
</tr>
<tr>
<td>F(239)</td>
<td>0.2</td>
</tr>
<tr>
<td>F(240)</td>
<td>0.2</td>
</tr>
<tr>
<td>$t_{\alpha}(239)$</td>
<td>0.3</td>
</tr>
<tr>
<td>Spontaneous Fission Half-life</td>
<td></td>
</tr>
<tr>
<td>C$_{\alpha}$</td>
<td>0.3</td>
</tr>
<tr>
<td>C$_{SF}$</td>
<td>0.4-0.5</td>
</tr>
<tr>
<td>G</td>
<td>0.3</td>
</tr>
<tr>
<td>D</td>
<td>0.2</td>
</tr>
<tr>
<td>S</td>
<td>0.1</td>
</tr>
<tr>
<td>$t_{\alpha}(242)$</td>
<td>0.67</td>
</tr>
</tbody>
</table>

TABLE 3. The Error in the Final Result Due to Uncertainties in the Quantities in Eqs. (2) and (3)
TABLE 4. Comparison of 242Pu Alpha and Spontaneous Fission Half-lives

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Adjusted Half-life<sup>a</sup></th>
<th>Alpha</th>
<th>Spontaneous Fission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(3.65 \pm .05) \times 10^5 \text{ y}$</td>
<td>$(6.50 \pm .10) \times 10^{10} \text{ y}$</td>
</tr>
<tr>
<td>3</td>
<td>Relative to 238Pu t_α</td>
<td></td>
<td>$(3.79 \pm .05) \times 10^5 \text{ y}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Specific Activity</td>
<td></td>
<td>$(1.85 \pm .10) \times 10^5 \text{ y}$</td>
<td>$(6.78 \pm .10) \times 10^{10} \text{ y}$</td>
</tr>
<tr>
<td>5</td>
<td>Relative to 240Pu t_α</td>
<td></td>
<td>$(3.81 \pm .016) \times 10^5 \text{ y}$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Relative to 239Pu t_α</td>
<td></td>
<td>$(3.675 \pm .07) \times 10^5 \text{ y}$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Relative to 238Pu t_α</td>
<td></td>
<td>$(3.763 \pm .009) \times 10^5 \text{ y}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Calorimetric</td>
<td>$(6.8 \pm .7) \times 10^{10} \text{ y}$</td>
<td></td>
<td>$(7.45 \pm .17) \times 10^{10} \text{ y}$</td>
</tr>
<tr>
<td>9</td>
<td>Relative to 238Pu t_α</td>
<td></td>
<td>$(3.736 \pm .025) \times 10^5 \text{ y}$</td>
<td>$(6.79 \pm .05) \times 10^{10} \text{ y}$</td>
</tr>
<tr>
<td>10</td>
<td>Specific Activity</td>
<td>Unweighted Average</td>
<td>$(3.759 \pm .033) \times 10^5 \text{ y}$</td>
<td>$(6.86 \pm .18) \times 10^{10} \text{ y}$</td>
</tr>
<tr>
<td>This Exp</td>
<td>Relative to 239Pu t_α</td>
<td>Weighted Average</td>
<td>$(3.776 \pm .007) \times 10^5 \text{ y}$</td>
<td>$(6.78 \pm .04) \times 10^{10} \text{ y}$</td>
</tr>
</tbody>
</table>

^aAll measurements made relative to other Pu half-lives were adjusted to the appropriate half life in Table 2.
Fig. 2. The Fission Fragment Pulse-Height Spectrum for Sample 42. (ANL Neg. No. 116-77-920).