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FAST-NEUTRON INTERACTION
WITH ELEMENTAL ZIRCONIUM,
AND THE DISPERSIVE OPTICAL MODEL

S. Chiba, P. T. Guenther, A. B. Smith,
M. Sugimoto, and R. D. Lawson

ABSTRACT

Differential neutron elastic— and inelastic—scattering cross sections of elemental
zirconium are measured from ~ 1.5 to 10 MeV. Below 3 MeV the measurements are made
at incident-neutron energy intervals of = 100 keV, from 3 to 4 MeV at intervals of = 200
keV, and at intervals of x 500 keV at higher energies. The angular range of the
measurements is x 18¢ to 1600, with up to more than 100 differential values per
distribution. This comprehensive data base, augmented with a 24—-MeV elastic—scatterin
distribution from the literature, is used to develop two phenomenological optical—statistica
models which both describe the data very well. First, the parameters of the conventional
spherical optical model (SOM) are deduced. Secondly, the model in which the change in
the real potential brought about by the dispersion relationship (DOM) is examined. The
SOM parameters are consistent with systematics previously reported from this laboratory,
and the volume—integral-per-nucleon of the real potential strength, Jv, and the radius, I,

)

are energy dependent. When the DOM is used, a substantial part of the energy dependence
of J, (» 30%) disappears. However, the change in the energy dependence of r, is small, so

that a significant energy dependence remains when the DOM is used. Both models are
extrapolated to the bound-state regime where they have modest success in predicting the

binding energies of the single—particle and single—hole states in 90y,



I. INTRODUCTION

The total and elastic—scattering cross sections of fast neutroms from nuclei are
generally described in terms of an optical model having real, imaginary and spin—orbit
components. For spherical nuclei there are two variants of this model in vogue at present.
In the first (hereafter referred to as the spherical optical model, SOM), the real potential is
taken to have the Woods—Saxon shape, the imaginary potential the surface—peaked
derivative of the Woods—Saxon well, with perhaps a volume absorption setting in at

energies of x > 20 MeV, and a spin—orbit potential of the Thomas form.1 In the second

formulation, the fundamental dispersion relationship,2 which links the real and imaginary
optical-model potentials, is taken into account, and this will be referred to as the
dispersive optical model (DOM). In this paper, parameters which define both an SOM and
a DOM describing neutron scattering from elemental zirconium are deduced. The applied
importance of a reliable model for elemental zirconium is clear, since zirconium is a key
component of fissile alloys used in the most promising, and inherently safe, fast fission-

reactor concept (the Integral Fast Reactor, IFR).3 To apply the elemental zirconium
model to specific isotopes, one must know the magnitude and sign of the Lane term of the

potentials,4 that is, the (N — Z)/A term. This, of course, cannot be determined from our

elemental data, but it can be deduced from the Ohio University studies®® which involve
separated zirconium isotopes. It should be noted that the coefficient of the (N —Z)/A
term extracted from the Ohio data has the opposite sign for the imaginary potential

relative to that given by global models. "8 The sign is, however, consistent with the results
of 8 MeV ratio measurements made at this laboratory,9 and with the fact that the
imaginary potential increases rapidly as one moves away from a closed shell. 10

Since we consider the differential elastic—scattering cross sections between % 1.5 and
24 MeV and total cross sections from thermal to 20 MeV, the energy variation of the model
parameters is reasonably well—defined over a wide range. As both the SOM and the DOM

are fitted to the same data, we can check the conjecture11 that the energy dependence of
the geometric parameters of the real SOM are due entirely to the fact that the dispersion
contribution to the real potential was neglected. Furthermore, as discussed by Mahaux

and collaborza.tors,m’13’14 once the energy variation of the optical-model parameters is
known, one can use the dispersion relationship to extrapolate to the bound—state regime;
that is, deduce the shell-model potential. Thus, combining this with the (N-Z)/A
dependence discussed above, one can examine the neutron binding energies of the single-

particle and single-hole states of the closed shell nucleus Nz,

In Section II, the experimental procedures used in the present measurements are
outlined. In Section III, the experimental results are presented. Sections IV and V are
devoted to the determination of the parameters of the SOM and the DOM, respectively,
and to comparing the theoretical predictions, made on the basis of these models, with the
experimental results. The predicted binding energies of the neutron single—particle and

single—hole states in 907, are discussed for both the SOM and the DOM in Section VI.
Finally, in Section VII our results are summarized and discussed.



II. EXPERIMENTAL PROCEDURES

All of the measurements were made using the pulsed—beam fast—neutron time—of-
flight technique. The neutron angular distributions were determined using the Argonne

10—-angle time—of—flight apparatus.15’16 Higher—resolution measurements were made at
selected energies using a heavily shielded 14.52 m flight path at a scattering angle of 800.17

The scattering samples were solid metal cylinders of elemental zirconium 2 cm in
diameter and 2 cm long. The chemical purity of the samples was > 99%. Below 4 MeV,
reference standard samples of carbon (pile grade graphite) were used, and above 4 MeV,
the reference standard was hydrogen in the form of polyethylene (CH2). The standard

samples were the same dimensions as the zirconium ones, with chemical purity of better
than 99%. The weights of all the samples were measured to an accuracy of better than
0.01% using conventional techniques. The samples were believed to be of uniform density,
although the measurements were not sensitive to this uniformity.

Two types of neutron sources were employed in the measurements. Below 4 MeV,

the 7'Li(p,n) reaction18 was used, with the lithium metal vacuum evaporated onto
tantalum backings to thicknesses giving neutron energy spreads of » 50 keV at a 00 source-

reaction angle. Above 4 MeV, the D(d,n) reaction’® was used, with the deuterium gas
contained in a cell ¥ 2 cm long. The deuterium gas pressure within the cell was adjusted to
give neutron energy spreads at a 0o source-reaction angle of x 250 keV at 4.5 MeV and

The scattering samples were placed ~ 17 cm from the neutron source at a 0° reaction
angle. In the angular—distribution Ineasurements, a massive collimator system defined the
ten flight paths of » 500 cm, distributed over scattering angles between 180 and 160c. The
relative angular scale of the scattering apparatus was determined to % 0.10 using optical
instruments. Below an incident energy of 4 MeV, the zero of this angular scale was
determined to x 0.20 using optical methods. This degree of accuracy was believed to be

order to monitor source intensity. These monitors were supported by conventional long-
counters. In the higher—resolution, long ﬂight—path_ measurements, the neutron source and

cadmium, and boron in order to reduce backscattering to the sample position. A precision
collimator penetrated this shielded vault at an 800 scattering angle.
The neutron detectors used in the angular—distribution measurements were organic

liquid scintillators,19 2 cm thick and 12.5 ¢cm in diameter. Their Y-Tay response was



suppressed using pulse—shape—discrimination techniques. Similar scintillators were used
for the long—flight—path, higher—resolution measurements, but they were larger (5 cm in
thickness and 25 cm in diameter), and four of them were arranged in a square array. This
array was placed within a concrete shield approximately 1 m thick, in order to suppress the
ambient background. The relative energy dependencies of the detectors were determined

by the observation of neutrons emitted in the spontaneous fission of 2520f, as described in
Ref. 20. These relative sensitivities were normalized to either hydrogen or carbon reference

standards21 by observing either differential elastic scattering from polyethylene (for
measurements > 4 MeV) or the total cross section of carbon as described in Ref. 22 gfor
measurements < 4 MeV). As a practical convenience, in the long flight—path measure-
ments an intermediate secondary reference was used, either the elastic scattering from

zirconium or the cross section for the inelastic excitation of the 1.454 MeV (2+) level of
S8y i, both as determined in the short flight—path measurements.

The incoming experimental information was sorted and stored in a digital computer,
and then reduced to cross sections using a complex data—processing system that has been

developed over many yea,rs.23 A part of this system included Monte—Carlo corrections for

multiple—event, angular—resolution and beam—attenuation effects.> The Monte—Carlo
procedures were pursued through three iterations, to assure a level of convergence which
provided accuracies of approximately 1%.

III. EXPERIMENTAL RESULTS

A. Elastic Neutron Scattering

At few—MeV energies, the elastic—scattering cross sections of zirconium may
fluctuate with energy due to residual resonance effects. Therefore, at energies below 4 MeV
the elastic—scattering measurements were undertaken in considerable energy detail with
50—70 keV incident—neutron energy spreads. The scattered—neutron resolution was
sufficient to separate the elastic component from the inelastic contributions. The angular
distributions were measured at x 70—100 keV intervals from ~ 1.5 to 3.0 MeV. At these
lower energies and broad incident resolutions, the observed angular distributions do not
display a great deal of structure. So, they were reasonably well—defined by ten differential
measurements at each incident energy, distributed between % 250 and 1550. From 3 to 4
MeV, the elastic—scattering distributions were measured at x 200—keV incident—energy
intervals, with 20 differential values per distribution. The total uncertainties in the
individual differential values (including counting statistics, angular uncertainties,
correction factors, and normalizations) were estimated to be < 5%. These lower—energy
ﬁes?lts were obtained at this laboratory some time ago, and are discussed in more detail in

ef. 25.

Above 4 MeV, the measurements were made at approximately 0.5~MeV intervals
from 4.5 to 10.0 MeV, and the angular range was approximately 180 to 1600. The data
were taken over several years, in sets of 2040 angular values at each measurement period
and incident energy. When combined, the average number of differential values per
distribution was 107, sufficient to give good definition of the angle-dependent structure.
Throughout these measurements, the scattered—neutron resolution was sufficient to
reasonably resolve the elastic— and inelastic—scattered contribution. In a number of ways
(e.g., angular scale, detector normalizations, etc.), the measurements at the various



experimental periods were independent — thus reproducibility is some indicator of
reliability. However, in other aspects (e.g., reference standard, correction procedures, etc.),
the individually measured sets have the possibility of a common systematic uncertainty.
The uncertainties associated with the differential values varied a great deal, depending on
the care given a particular measurement and on the scattering angle. Except at the very
minima of the distributions, statistical uncertainties were relatively small (< 1% — 3%), as
were those associated with the Monte—Carlo correction procedures (¢ 1%). The reference
H(n,n) scattering standard is known to better than 1%, Although reproducibility of a
number of measurements is some indication of angular uncertainty, this can be a serious
problem where the cross sections are changing very rapidly with angle. The detector
calibration procedures were complex, and it is difficult to quantify the uncertainties
associated with them. A subjective estimate is x< 3% below 8 MeV, and < 5% at higher
energies. It is likely that the major contributions to the uncertainties (e.g., detector
calibrations, etc.) are systematic and correlated to some unknown extent. This possibility
was ignored in the subsequent fitting procedures discussed in Section IV.

The elastic—scattering results described here are illustrated in Fig. III-1. Some
isotopic elastic scattering results have been reported, and these will be compared with the
present measurements in Section IV.

B. Inelastic Neutron Scattering

At lower energies the broad resolution required for a reasonable averaging of
fluctuations in the elastic scattering precludes optimum resolution of the inelastically-
scattered neutron groups. Moreover, elemental zirconium consists of four isotopes with
significant abundance, resulting in a large elemental level density and, thus, very complex
inelastically—scattered neutron spectra. Despite this, the discrete inelastic—scattering cross
sections generally were determined for incident energies of less than 4 MeV. These results
largely consisted of the composite contributions from the excitation of levels in several
isotopes. Nine such "elemental" inelastic groups were identified and attributed to phe
excited levels given in Table III-1. The corresponding angle—integrated inelastic-scattering
cross sections of the first five of these groups, shown in Fig. III-2, were obtained by fitting
the measured differential cross sections with second—order Legendre—polynomial
expansions. The illustrated uncertainties are larger than for elastic scattering, due to lower
counting rates and to uncertainties in the experimental resolution of the underlying
complex structures. There are remarkably few previously reported discrete inelastic-
scattering cross sections of elemental zirconium, probably because of the experimental
difficulties outlined above. There have been some isotopic results reported, and these are
discussed and compared with the present study in Section IV.

Above 4 MeV incident—neutron energy, the inelastically—scattered neutron
spectrum blends into a continuum upon which is superimposed some small structure, due
to clumping of neutron groups from levels in the various isotopes. Spectra obtained with
the 5 m flight paths displayed only a trace of the excitation of the 941 keV "group"
observed at lower energies. This contribution was generally a very small artifact on the
shoulder of the much larger elastic—scattering peak. Therefore, no attempt was made to
deduce the corresponding cross sections from the 5 m measurements. There were two
prominent structures in the spectra obtained at 5 m, one corresponding to excitations of
~ 1.85-2.2 MeV, and the other to excitations of ~ 2.6—2.9 MeV. The corresponding
emitted—neutron distributions were essentially isotropic, and the angle—integrated cross
sections, given in Table III-2, were obtained assuming isotropy.
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Fig. III-1. Differential elastic—scattering cross sections of elemental zrconium.
The present measured values are indicated by data symbols. The curves denote the results
of least—square fitting Legendre polynomial expansions to the measured values. The data
are given in the laboratory coordinate system.
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Fig. III-2. Cross sections for the excitation of "elemental" groups in zxrcomumt;;
defined by Table ITI-1. Symbols indicate the present experimental results, and curves ti >
calculated values as discussed in Section IV of the text. Observed excitation energies 2-=
given in keV.



Table III-1. Discrete inelastic—neutron excitation energies of
elemental zirconium (in keV) at incident energies
of less than 4 MeV.

Excitation Energies

No. Exp. 90Zra‘ 91Zra' 92Zra' 94Zra
1 941425 —_ — 934(2+ 919(2+
2 1476+37 —_— 1205(1/2+ 1383(0+ 1300(0+

1466(5/2+ 1495(4+ 1470(4+
3 1787+23 1761(0+) 1882(7/2+ 1847(2+ 1671(2+
4 2101+26 — 2042(3/2+ 2067(2+ 2057(3—
2131(9/2+
5 222117 2187(2+ many 2150(?) 2151(2+)
6 2363+14 2319(5— L ———— many — — — — ——
7 2791+15 2739(4-) @ —————— many — — — — — —
2750(3—
8 3101£25 3077(4+) @ - ——— many — — — ———
9 3331+7 3309(2+) @ ————-—— many — —————

2 Nuclear data sheets as given in Refs. 26 — 2.




Table IIT-2. Comparisons of measured and calculated
compound- nucleus inelastic-scattering cross sections,
as discussed in the text.

E_ =~ 0.941 MeV

x
E,, (HeV) 14.5 m Flight Path CN cal.
do/df} (mb/sr) ¢ (mb) o (mb)
6.0 2.6 32.7 2.2
7.0 2.9 36.4 0.6
8.0 2.5 31.4 0.2
E_~ (1.85 - 2.2) KeV
E; (Hev) Flight path CN cal.
5 m 14.5 m

o(mb) do/dt (mb/sr) ¢ (mb) ¢ (mb)
4.5 321 307
5.0 235 233
5.5 163 178
6.0 125 11.9 150 137
6.5 107 103
7.0 83 4.6 58 82
8.0 4.4 55 49

E, » (2.6 - 2.9) MeV

E,  (MeV) Flight Path CN cal.

o m 14.5 m

7(mb) do/dft(mb/sT) o(mb) ¢ (mb)
5.5 147 162
6.0 133 12.7 160 139
6.5 103 107
7.0 95 5.8 73 85
8.0 3.4 43 53
8.4 54 42




The 14.5 m measurements were limited to one scattering angle, 80°, but gave
superior energy resolution. Representative time spectra are shown in Fig. III-3. A general
neutron continuum is observed, due to the profusion of levels given in Table III-1.
Superimposed upon this are some scattered—neutron groups, the first being the 941 keV
"level" of Table III-1. Assuming isotropy of neutron emission, the cross sections of Table
III-2 were obtained. As will be giscussed in Section IV, these cross sections grossly exceed
those predicted by the compound-nucleus process, so that a strong direct—excitation
component must be contributing. Thus, the validity of isotropy assumed in deducing the
angle—integrated cross section is weak. Two other groups, reasonably in evidence in the
long flight—path results, correspond to the two 5 m groups cited above. In these cases, the
assumption of isotropic neutron emission is reasonable in deducing angle—integrated cross
sections. With this assumption, the results of Table III-2 were obtained. There is fair
consistency between the results obtained with the two flight paths, and with the
predictions of the compound—nucleus model, as discussed in Section IV. The uncertainties
associated with the measured 14.5 m flight—path values in Table III-2 are estimated to be
~ 10%, with a larger value for the 0.941 MeV group due to its very small cross sections and
probable anisotropy.

IV. PHENOMENOQLOGICAL OPTICAL-STATISTICAL MODEL

This portion of the data interpretation is based upon the conventional spherical

optical—statistical model (SOM).1 In the present application, the interpretation is
complicated by the multi—isotopic nature of the elemental samples used in the

measurements. More than half of the element consists of 20Zr (51.45%), and the remaining
isotopes are *'Zr (11.27%), %2zr (17.17%), %2x (17.33%), and %%7c (2.78%).3% In view of
the very small elemental abundance of 96Zr, it was ignored in the present analysis. The

remaining four isotopes have quite different excited states, particularly 90Zr, and thus each
will have a different compound—elastic—scattering contribution. These differences,
together with simple size and asymmetry effects, should be considered in the interpretation
if quantitative results are to be obtained. In the present work, a special version of the

spherical optical-model code ABAREX was used. 31 This formulation of the code has the
capability to least—squares fit the experimental observables, explicitly treating the
individual direct and compound—nucleus contributions from up to ten isotopes, and
combining them to obtain the elemental result directly comparable with experiment. The
excitation of the discrete levels (as well as the statistical level properties) of each of the
contributing isotopes were explicitly treated in the fitting. Compound—nucleus processes

were calculated using the Hauser—Feshbach theory32, as corrected for resonance width-

fluctuation and correlation effects by Moldauer.33

The primary data base for the derivation of the SOM parameters consisted of the
present elastic—scattering results extending from % 1.5 to 10 MeV, and shown in Fig. ITI-1.
Elastic scattering at energies of less than 1.5 MeV was not considered, since fluctuations in

the cross sections, primarily due to the prominent and closed—shell 9OZr isotope, make the
results suspect in the sense that they are not consistent with the energy—average concept of
the SOM. To guard against such fluctuations above 1.5 MeV, the data base was averaged
over » 200 keV incident—energy intervals up to 4 MeV. Above 10 MeV, only one set of
good—quality differential elastic—scattering cross sections was found in the literature, the
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Fig. III-3. Observed time spectra obtained by scattering 71 (left) and 8.0 MeV

(right) neutrons from elemental zirconium. The scattering angle is 80° and the flight path
1452 ‘m. The measured values are indicated by symbols, and prominent average
excitations by A = elastic scattering, B = inelastic excitation of the 941 keV "group”,
C = neutrons from excitations in the range of » 1.85 —2.2 MeV, and D = contributions
from excitations of x 2.6 — 2.9 MeV.

10



94—MeV distributions of Refs. 5 and 6. Although the latter results are isotopic, an
elemental distribution was constructed. It was added to the primary data base to provide
a higher—energy elastic—scattering distribution for the fitting. This data base was
explicitly least—square fitted to determine the SOM parameters, as described below. The
fitting involved minimizing the expression

N
TN
i=1

The results of the analysis were compared with the elemental neutron total cross section, as
summarized in Ref. 34, and with the isotopic s— and p—wave strength functions, although
these observables were not a part of the fitting procedure.

o,(exp) - o;(cal) 12
e ] . (IV-1)

91, 92

All the discrete levels?5~2? below 4 MeV in 90Zr, and below 3 MeV in ¥ Zr, ““Zr,
and 94Zr, were taken into account in these calculations. These 71 states are listed in Table

IV-1. Although most of them have known J™ values, a few cases were ambiguous.
However, these were all at fairly high excitation energy, where many exit channels are

open, so that the calculated results are not very sensitive to the assumed JT estimates.
The effect of compound—nucleus processes involving excitations above the discrete levels

was calculated using the statistical level representation of Gilbert and Cameron.3% Those
authors explicitly give temperatures (T), E0 values, and spin cutoff factors (o) for 927,

and Mz, They also provide formulae from which values were calculated for 907; ang

97:  These statistical parameters are summarized in Table IV-2. They reasonably
extrapolate to the known discrete level structure, and modest variations in them do not
significantly change the results of the fitting.

The SOM was assumed to have Woods—Saxon and derivative Woods—Saxon forms

for the real and imaginary potentials, respectively, and a Thomas spin—orbit term.!
Although the neutron polarization is sensitive to the spin—orbit potential, the Zr elastic
scattering is not. Since comprehensive polarization data are not available for the Zr
isotopes, the choice of this interaction is somewhat arbitrary. Throughout most of the
present analysis it was assumed that

VSO = 5.5 MeV
r,, = 1.005fm (1V-2)
g, = 0.65 fm.

These parameters are similar to those given for global SOM’s, as deduced when
polarization data were awa.ilable.7 (Throughout this paper, radii are expressed in the form
R = A1/3

i =5 AT

Consider the central SOM potentials. If, for example, the global 10—-MeV
parameters of Walter and Guss7 were used, the effect of the isovector interaction, the

11



Table IV-1. Discrete level structure employed in the
calculations. Ex is the excitation in MeV and J¥ are
the spin and parity values assumed in the calculations.

90, a 91, b 92, ¢ 94, d
E. J7 E,. J7 A E, IT
0.0 o 0.0 5/2" 0.0 o 0.0 o
1.761 0° 1.205 1/2° 0.934 2° 0.919 27
2.187 2° 1.466 5/2* 1.383 0" 1.300 0F
2.319 5 1.882 7/2° 1.495 4" 1.470 4°
2.739 4 2.042 3/2" 1.847 2% 1.671 2*
2.750 3 2.131 9/2° 2.067 2° 2.058 3
3.077 4° 2.170 11/2° 2.340 3 2.151 2%
3.309 2° 2.190 5/2 2.398 4° 2.330 4"
3.448 6" 2.201 7/2° 2.486 5 2.366 2*
3.589 8" 2.260 13/2° 2.744 4 2.508 3*
3.843 27 2.288 15/2 2.820 2% 2.605 5
3.976 5 2.321 11/2 2.864 47 2.699 1%
-- 2.357 1/2 2.904 0° 2.826 3
-- 2.367 7/2 2.958 6" 2.846 27
-- 2.395 9/2 -- 2.861 5
-- 2.535 3/2° -- 2.908 27
-- 2.558 1/2° -- --
-- 2.578 5/2 - --
-- 2.640 3/2° -- --
-- 2.694 7/2° -- --
-- 2.765 13/2 -- --
-- 2.775 5/2 -- --
-- 2.811 5/2 -- --
-- 2.826 3/2° -- --
-- 2.857 13/2° .- --

12



Table IV-1 (Continued)

2 p. C. Kocher, Nuclear Data Sheets 16 55 (1975).

by . Muller, Nuclear Data Sheets 31 181 (1980); 60 835 (1990).
C P. Luksch, Nuclear Data Sheets 30 573 (1980).

dyg. v Muller, Nuclear Data Sheets 44 277 (1985).

Table IV-2. Statistical parameters used in the calculations.35

Isotope Temperature (MeV) E, (MeV) spin cutoff
907, 0.854 1.00 3.37
91y, 0.831 0.04 3.42
924, 0.740 1.01 3.35
94y, 0.760 0.84 3.65

13



(N-Z)/A term* would be to decrease the real and imaginary strengths by about 1.2% and

7.4%, respectively, in going from 90Zr to 94Zr. Such changes were examined and found to
have little impact, and hence they were neglected in the subsequent analysis. In addition,
even though the data base extended to 24 MeV, no evidence was found for any significant
volume absorption. When the latter potential was included in the fitting, its strength

turned out to be very nearly zero, in agreement with the findings of Wang and Rapaport.6
The SOM parameter search started by varying the real and imaginary strengths,
radii, and diffusenesses. The initial emphasis was given to the determination of the real

potential, as it is expected to be less sensitive to detailed nuclear—structure effects than the
imaginary interaction. The resulting real radius, - decreased with energy in an

approximately linear manner, as described by

r, = (1.310 — 0.0063-E) fm, (IV=3)

where, throughout this paper, E is the incident—meutron laboratory energy in MeV.
(Herein, potential parameters are cited to high precision, so that the calculational results
can be accurately reproduced.) The data base was refitted, fixing r_ to this value and

varying the remaining five parameters. The resulting real diffuseness was essentially
constant with energy, with the average value of

a, = 0.667 fm. (IV—4)

The fitting then proceeded to the remaining four—parameters. This resulted in the
imaginary radius of

r,, = (1.39 —0.0063-E) fm. (IV=5)
Fixing r_, three—parameter searches then gave
a, = (0.310 + 0.018-E) fm. (IV-6)

Finally, the real and imaginary strengths were determined from two—parameter fitting,
using the above fixed geometric parameters. The strengths were expressed in the form of
volume—integrals—per—nucleon, J,

J = ﬁlj vi(r) 12 dr, (IV=7)

where "i" is "v" or "w" for real and imaginary strengths, respectively. The values of Jv
and J_, shown in Fig. IV—1, were deduced from the strengths and geometries of the

optical-model potentials, assuming that A =91.3 (i. e., the weighted average for the
elemental sample). From Fig. IV—1, it is clear that the J values resulting from the fitting
varied in an approximately linear manner with energy. The uncertainties in these Ji values

are related in a complex manner to the model interpretation and the underlying data. For

14
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Fig. IV—-1. Real (J ) and imaginary (J,,) volume integrals per nucleon as a function

of incident energy for the SOM. Experimentally—deduced values are indicated by symbols
and the results of the linear fits of Eqs. IV—8 and —9 by solid lines. The J; units are

MeV—fmS.

15



J» they are estimated to be » 1.5% above 4 MeV and = 2% at lower energies, as illustrated
in Fig. IV—1. A least—squares fit to these values gives

J, = (471.17 - 5.09-E) MeV—fm®. (IV—8)

There is more scatter in the JW values, particularly at energies below ~ 4 MeV where the

results are sensitive to the detailed nature of the statistical parameters of Table IV~2, and
to residual cross—section fluctuations. At these lower energies the uncertainties in Jw are

estimated to be x 10%, while above 4 MeV the error is » 5%. Again, a least—squares fit,
taking into account the estimated uncertainties, gives

J,, = (58.36 + 0.74-E) MeV—fm®, (IV—9)
On the other hand, if one limits the fit to energies above 4 MeV,

3. = (57.17 + 0.83.E) MeV—fm?. (IV-10)
The two results are consistent within the uncertainties estimated for individual JW values.

The results calculated with the model described above are compared in Fig. IV—2
with the experimental data from which it was developed. The agreement between
measured and calculated results is generally very good, and the differences are probably not
significantly larger than the experimental uncertainties. The same model gives a good
description of the elemental zirconium energy—averaged neutron total cross section from a
few keV to at least 20 MeV as illustrated in Fig. IV-3. The measured and calculated
values agree to within several percent over the entire energy range.

To apply this model to the data observed for the various zirconium isotopes, one
must make some assumption about the (N — Z)/A dependence of the deduced potentials.
For this purpose, we assume that Jv can be expressed in the form

I, = Jo[1 +a-((N- Z)/A)] + 6, -E, (IV-11)

with J o and a, independent of énergy, E, and ﬂv independent of (N —Z)/A. The global

8

models of Walter and Gu‘ss7, and of Rapaport”, give a, = —0.31 and —0.42, respectively.

The fitting of the separated—isotope data at 8, 10 and 24 MeV6 leads to a, =—0.35
(intermediate between the two global values), and we shall use this value. In order that Iy
have the value given by Eq. IV—8 (when Z = 40, N = 51.3 and A = 91.3), it follows that

I, = [492.50(1 ~0.35-((N ~ Z)/A)) — 5.09-E] MeV—fm®. (IV-12)
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Fig. IV-2. Comparison of measured and calculated elastic—scattering cross sections
of elemental zirconium. The results obtained with the SOM are indicated by curves. The
measured data are indicated by "o" symbols, where all results for E < 10 MeV are from the
present work, and the 24 MeV distribution from ref. 6. Incident energies are numerically
given in MeV. The data are in the laboratory coordinate system.
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Fig. IV-3. Comparison of measured (symbols) and SOM—calculated (curve) neutron
total cross sections of elemental zirconium. The various experimental values are taken
from the literature as described in ref. 34.
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A similar expression can be written for J W According to the global models,7’8 a, is
negative and has an absolute magnitude greater than unity. On the other hand, the
zirconium isotopic data® clearly indicate that J _ increases with increasing (N — Z)/A —in
other words, the sign is opposite to that given by the global models. This is
understandable, since 90Zr has fifty neutrons, and it is well known that Jw increases
rapidly as one moves away from a closed shell. 10 Physically, W is a measure of the

softness éease of excitation) of the core, and it is widely recognized that closed—shell nuclei
have stiffer cores (i.e., fewer low—lying states with smaller excitation probabilities). The

Zr isotopic data of Wang and Ra,paport6 indicates that a, could be as large as 5 — 10.

However, in view of the uncertainties in the data, and the derivation of the model from the
data, we feel that a more realistic estimate of a is probably about 2. Accepting this, one

finds that in order for ‘Iw to have the values given by Eq. IV-9 (for Z = 40, N = 51.3, and
A =91.3),

3, = [46.78(1 +2.((N—2)/A)) + 0.74-E] MeV—fm3. (IV-12)

The low—energy strength functions deduced from resonance measurements were not
a part of the data base used in the fitting. However, the values calculated, using the model
and the potential strengths given by Egs. IV—11 and —12, are in reasonable agreement with

those deduced from resonance measurements,36 as shown in Table IV-3. The predicted
s—wave strength function decreases slightly as one goes to the heavier isotopes.
Concurrently, the p—wave values increase. Although the experimentally derived data have
a great deal of scatter, they do exhibit the same general mass—dependent trends. Since the
model has only a smooth dependence on (N — Z)/A, it cannot reproduce the fluctuations
evident in the experimentally based data, which may reflect detailed differences in nuclear

Table IV-3. Comparison of measured and calculated strength
functions ( X 104) for the isotopes of zirconium.

s—wave strength function p—wave strength function
Isotope Exp. Cal. Exp.* Cal.
907, 0.7£0.2 0.64 4.0:0.6 5.19
Nz, 0.36£0.08 0.63 6.7+1.3 5.45
927, 0.50£0.10 0.62 7.0+1.3 5.69
%z, 0.50£0.15 0.61 9.8+2.0 6.10
967, 0.340.14 0.59 6.0:1.8 6.40

* From Ref. 36.
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structure, small resonance samples, or other experimental uncertainties. The calculated

scattering length, R’, decreases from 6.98 fm for 907 to 6.88 fm for 96Zr, and is in

reasonable agreement with the experimentally deduced value of (7.2 = 0.2) fm.36

In Figs. [IV—4 and -5, the predictions of the model, with the potential strengths of
Egs. IV-11 and —12, are compared with experiment. The data for the two isotopes, 90Zr

and 92Zr, are fairly extensive,6’37’38 and agreement between measured and calculated
results is remarkably good from 1.5 to 24 MeV, as illustrated in Fig. IV4. The

experimental data6’39 for ngr and 94Zr are fewer, but again the model appears suitable,
as shown in Fig. IV-5.

As discussed in Section III, it is difficult to relate observed elemental inelastic-
scattering cross sections to the excitation of specific levels in individual isotopes. However,
there is some isotopic inelastic—scattering information reported in the literature

(summarized in Ref. 34) which is primarily confined to inelastic—scattering from 907; and

927, Some of these experimental results are compared with the predictions of the model
in Figs. IV—6 and —7. Given the experimental uncertainties, the agreement is acceptable.
The calculated results are also compared with the present elemental measurements in Fig.
I11—2. Agreement between the first few measured and calculated excitations is reasonably
good at low incident energies where the processes are primarily due to compound—nucleus
reactions. However, the complex elemental level structure makes comparisons for the
higher—energy excitations less reliable because of limited experimental resolution. At
higher incident energies, the inelastic scattering is essentially a continuum distribution,
upon which is superimposed some structure due to clumps of levels, as illustrated in Fig.
II1—3. The measured composite inelastic—scattering Cross sections are summarized in Table
III—2. The inelastic—scattering cross sections implied by the two prominent scattered-
neutron groups (corresponding to observed excitations of ¥ 2.05 and 2.75 MeV) are in good
agreement with the predictions of compound—nucleus calculations obtained using the
model. However, the cross section at, for example, 8 MeV for the excitation of the "941
keV group" is two orders of magnitude larger than predicted by compound—nucleus

calculations. The observed excitation is primarily due to the yrast 27 levels in 927: and
94Zr, and these are known to have a strong direct—reaction component. For example, at 8

MeV the work of Wang and Rapaport6 indicates similar 97 excitations for 927: and %7,
with a cross—section magnitude of = 60 mb. Thus, the direct—reaction contributions of
these two isotopes to the "941 keV group" in elemental zirconium would be about 20 mb,
and this is in fairly close agreement with the value given in Table III-2. Similarly,
direct—reactions undoubtedly contribute to the higher—energy cross sections listed in Table
I1-2, but their effects are not as dramatic as those of the "941 keV group" since, in these
cases, the compound—nucleus cross section is # 50 mb.

The need for direct—reaction contributions can be further illustrated by Monte-

Carlo simulations40 of the observed velocity spectra. In Fig. IV-8, the expected velocity
spectrum, equivalent to the examples of Fig. [11-3, is simulated using compound—nucleus
inelastic—scattering cross sections calculated with the model. For the two higher—energy
groups, the simulated results are qualitatively similar to the experimental distributions
given in Fig. III-3, even though the detector energy dependence has not been considered in
the simulation, and the Monte—Carlo results are binned into relatively wide, 150, angular
increments. However, the compound—nucleus—based simulation results in a spectrum that
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Fig. IV—4. Comparison of measured (symbols) and calculated (curves) differential

elastic—scattering cross sections of 0gz; and 927r. The measured values were taken from
refs. 6, 37 and 38, and the calculations used the SOM potential. Incident energies are
numerically given in MeV. The data are given in the laboratory coordinate system.
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caption of Fig. III-3. The inelastic-neutron groups can be associated with the isotopic
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has very little evidence for inelastic excitation of the "0.941 MeV group", in disagreement
with experiment. Furthermore, a comparison of Figs. III-3 and IV—8 suggests a very small
continuum of inelastically—scattered neutrons, throughout the energetically accessible
region, that is not consistent with a purely discrete compound—nucleus representation.
This suggests that small pre—compound processes may contribute to a number of the
inelastic—scattering cross sections.

In fitting the elemental zirconium data, the size dependence (Ri = riAl/ 3) was

taken into account, but the potential strengths were assumed to be the same for all isotopes
of the sample, i.e., the (N — Z)/A dependence of the strengths was assumed to be unimpor-
tant. We now return to quantitatively address this assumption. The darker curve in Fig.
IV—9 shows the predicted 10-MeV elastic—scattering cross sections for the various isotopic
constituents of elemental zirconium, when size variation is taken into account, but the
potential strengths (given by Egs. IV-8 and —9 with A = 91.3) are assumed to be the same
for each isotope. The lighter curves show the effects of varying size, and also including the
isovector component of the potentials — that is taking different strengths for each isotope
deduced from Eqs. IV—11 and —12. For A = 91 and 92, the two results are indistinguish-
able. For A = 90, they differ only at very large angles where no data exist. Thus, for
nearly 80% of the sample there is no experimentally observable effect of the (N—-7)/A
dependence of the potential. There are only slight differences between the two curves near

the minima of the 97, distribution, but these are smaller than the relevant experimental

uncertainties. It is only for 967 that the differences are significant, and this isotope is less
than 3% abundant. Thus, the assumption in the elemental fitting that the isovector effects
could be ignored is valid.

V. THE DISPERSIVE OPTICAL MODEL

In the preceding section, a conventional SOM was used to interpret the neutron
elastic—scattering data of elemental zirconium. In this analysis it was found that only the
diffuseness of the real potential was energy independent, whereas all of the other
geometrical properties of the SOM depended on E. Since the foregoing analysis did not

explicitly take into account the fundamental dispersion rela,tionship2 which links real and
imaginary potentials, it is of interest to see what happens when this feature is incorporated.

The dispersion relationship connects the real and imaginary OM potentials, or

radial moments of these interactions, by the expression

+wo , )
V(E) = Vygp(B) + B [ Rt (V-1)
—m

where V(r,E) and W(r,E) are the total real and imaginary potentials, respectively,
VHF(r,E) is the Hartree—Fock component, and P denotes the principal value integral. In

the SOM of the preceding section, a derivative Woods—Saxon form was used for the
imaginary potential.  This implies that the real interaction should have a surface
component. In order to estimate the magnitude of this surface component, consider Eq.
V-1, as expressed in terms of volume—integral—per—nucleon,
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Fig. IV-9. The effect of the isovector potential on the 10 MeV elastic—scattering
from the isotopes of zirconium. The heavy curves (A) were calculated using the same
potential strengths (Eqs. IV-8 and -9, A =091.3) and taking into account the

R, = ri-Al/ 3 Size effect for each isotope. The light curves (B) included the (N —Z)/A
dependence of the potential strengths as given by Eqs. IV—11 and —12.
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+o J (E’)dE’
To(B) = JogE) + %J_m"SI‘EZET'

In this expression, J s(E) is the surface—peaked component of the imaginary potential, given
by Eq. IV-9, and J off(E) is the sum of the contribution due to Vgp(E) and any additional

volume absorption which was not considered in the preceding discussion. (We shall return
to this point later.) In order to evaluate the effect of the surface interaction, dJ g O the

real potential we define, |

(V-2)

P J+m JS(E’ )dE' (v—3)

dJ =— TEET
-

s-
—
where J ¢(E) must be known for all values of E. In order to estimate this quantity, J S(E) is
assumed {o be:

i) Symmetric about the Fermi energy, EF’ where
Ep=1/2 (¢ + eg)
= -9.6 MeV , (V_4)

- 90
and €q and €g a1e the binding energies of the d5 /2 and 39}2 neutron states to the “ Zr

core.

i) For2-Eg ¢E¢0,J =1J -(E-Ep)*/Eq, where J = 58.36 MeV fm3 is the value of
Jg at E = 0 (see Eq. IV-9).

iii) For0<E¢25 MeV, J_ has the values given by Eq. Iv-9.
iv)  For E 3 25 MeV, J ¢ decreases linearly with energy to 0 at 60 MeV, and remains 0 at
higher energies.
With these assumptions, dJ s(E) was evaiuated. The results are shown in Fig. V-1 (curve
labeled "dJ s")' In the upper half of this figure, the ratio
R(E) = dJ (E)/J (E) (V-5)

i shown, and this is the factor by which the imaginary potential should be multiplied to
give the surface—peaked component of the real OM potential.

With the spin—orbit parameters held fixed to the values given by Eq. IV=2, a fit to
the Zr elastic—scattering data base, including the surface—peaked real component, was
carried out in the same way as discussed in the previous section for the SOM. Actually,
Since dJ (E) and R(E) depend on the deduced imaginary potential, one should repeat the
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Fig. V—1. The upper portion of the figure shows the RglE) of Eq. V-5, calculated as
described in the text. The lower portion of the figure shows the added volume integral per
nucleon obtained from the surface (dJ g) and volume (de) imaginary potentials (in

MeV~fm®) calculated using Eqs. V-3 and —7,
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fitting until self—consistency is obtained. However, the change in J s(E) is small and one

iteration is sufficient. The resulting parameters are listed under the heading DOM
(dispersive optical model) in Table V—1. The SOM parameters of the previous section are
also given there for comparison. The predictions for the elastic scattering angular

distributions and the total cross section334 obtained with the DOM parameters are shown
in Figs. V-2 and V-3, respectively. It is evident that the calculated results agree very well
with experiment. When (N —Z)/A dependencies of the potential strengths, as given in
Egs. IV—11 and —12, are incorporated, the s—and p—wave strength functions deduced by
use of the DOM are somewhat different than those given in Table IV-3. However, these
differences are only a few percent and, consequently, considerably smaller than the

uncertainties associated with the experimentally—deduced va.lues.36
From a comparison of the SOM and DOM parameters given in Table V-1, it is

clear that the inclusion of the surface real potential barely changes the E—dependence of
the geometrical parameters LN and a. Furthermore, the values of J g shown in Fig.

V—4, are quite similar to those obtained using the SOM — they increase linearly with
energy in the manner defined by the numerical values of Table V—1. On the other hand,
J off also shown in Fig. V—4, and the Jv of the SOM are quite different, as they should be.

Only when dJ g Eq. V-3, is added to J eﬁ-(E) should the two be compared. In the positive
energy range (0 — 25 MeV), dJ (E) can be quite well represented as a linear function of
energy, i.e., ‘

dJ, = (25.6 - 2.1-E) MeV-fm® . - (V-6)

When this expression is added to J ofp 3 relationship quite similar to that describing Jv is
obtained.

Table V—1. Comparison of SOM and DOM optical-model parameters.

SOM DOM
Real Pot.
J, = 47117 - 5.09-F Jog = 455.6 —3.41-E MeV - fm?
r, = 1310 - 0.0063-E = 1.300 — 0.0054-E fm
a, = 0.667 = 0.685 fm
Imaginary Pot.
J =5836+074E J, = 60.59 + 0.58-E MeV . fm®
r, = 1.390 — 0.0063-E = 1.385 — 0.0071-E fm
a, = 0.310 + 0.0180-E = 0.255 + 0.0253-E fm
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Fig. V—3. Measured (symbols) and calculated (curve) neutron total cross sections of
elemental zirconium. The energy—averaged experimental values are taken from the
l\i/teratu:e as described in ref. 34. The calculations used the DOM parameters of Table

1. ‘
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Fig. V4. Real, J ofp and imaginary, J g volume integrals of the potential strengths
(in MeV—fma) derived from the DOM interpretation of the data. The results of

interpretation are indicated by symbols and linear fits to these quantities by curves. The
values from the fits are given in Table V—1.
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Figure V-5 shows the total real potential, which is the sum of the surface and the
volume Woods—Saxon components, as a function of radius at two incident energies, 1 and
24 MeV. From this figure, it is lear that the summed potential is very similar to the
simple Woods—Saxon shape.

In the DOM fit to the data, J off the sum of the Hartree—Fock component and a

possible contribution from volume absorption, can be well represented by a linear function
of E, as shown in Fig. V—4. Since J HF(E) is expected to have a simple E dependence, it is

important to examine the energy dependence of this added term to be sure that the linear
E—dependence of Joft is consistent with this expectation. To estimate the added term, we

assume that the volume absorption, which is taken to be symmetric about EF, is zero for
0<E < E, increases linearly starting at E attains a maximum value of J  at E=E_,
and then is constant for all E greater than Em. With these assumptions, dJ v (the volume
analog of Eq. V-3), becomes
J E_-BE —2EL+E_+E
F'™m
41 (B) = gy | (BBo) g gl + (BB 41— =

v m Yo o o m 0o | ) m i

—2EF+E o +E ]

If one, somewhat arbitrarily, takes E =25 MeV (the value of E at which the surface
absorption was assumed to begin to decrease), E_ = 60 MeV (the value of E at which the

surface absorption was assumed to to reach zero) and J = 76.86 MeV—im3 (the peak
value of the surface absorption according to Eq. IV—9), then dJ v(E), as shown in the lower
portion of Fig. V-1, will be obtained. As can be seen, de(E) is small over the entire

energy range —25 to +25 MeV, and has an almost linear dependence on E. Thus, the fact
that J (E) is found experimentally to be a linear function of E is not in conflict with the

fact that Jgp(E) should be a simple linear function of energy.

The data on J ¢ (shown in Fig. V—4) were fitted by assuming a linear dependence
on bombarding energy. Since J g i considered to be the sum of Hartree—Fock and
volume—absorption contributions, one might attempt to find the strength of this absorption
from the measured values by assuming

Jeff(E) =a+fE+ 'y-de(E) . (V-8)

In this expression, the first two terms represent the Hartree—Fock contribution, and the
last term is the contribution of the volume absorption. Assuming the simple form of Eq.
V-7 for de(E), the value of 7, and thus the actual volume integral per nucleon of the

absorption, can be obtained. Unfortunately, the uncertainties in the data, together with
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Fig. V-5. DOM real—potential shapes at 1 MeV (upper) and 24 MeV (lower). The
effective volume potential is indicated by o symbols, the surface component by O symbols,
and the composite surface plus volume potential by A symbols.
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the nearly linear energy dependence of dJ V(E), make this approach impractical. A fit to
Jeff(E) gives v = (0.53 £ 1.76).

Although the spin—orbit parameters given in Eq. IV—2 are within the error bars of

the values found in the a,xialysis41 of data on the neighboring nucleus 89Y, the strength of
this interaction is somewhat smaller than used in other analyses of data on the separated

zirconium isotopes.5’6 The effect of changing the spin—orbit potential to

Vso = (6.84 — 0.033-E) MeV
I = 1.14 fm

a,, =05 fm (V-9)

was examined by making a second DOM fit to the data. The parameters resulting from
this fit are

J g = (435.94 — 1.46-E) MeV—fm®
r, = (1.2533 —0.0007-E) fm
a, = 0.6839 fm

J, = (59.18 + 0.89-E) MeV—fm®
r, = (13748 — 0.0048-E) fm
a, = (0.3419 + 0.0111-E) fm. (V-10)

A comparison of these DOM parameters with those of Table V-1 shows that the changes
are mainly in the real potential — the energy dependence of I, has essentially vanished

and that of J g has become quite small. The description of the elastic—scattering

distributions is similar to that obtained with the spin—orbit potential of Eq. IV-2.
However, as shown in Fig. V-6, the description of the neutron total cross section has
markedly deteriorated at energies below several MeV. Thus, a better overall description of
the neutron interaction with zirconium is obtained with the DOM of Table V-1 and the
spin—orbit potential of Eq. IV-2, and it is suggested that these potentials be used in

subsequent DOM analyses of the neutron interaction with the zirconium isotopes.

VI. THE BOUND—STATE POTENTIAL

A. SOM

The dispersion relationship (Eq. V1) which links the real and imaginary potentials
also relates the radial moments of these interactions, i.e.,
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where, for example,

<1(B)d>_ = 4% JZ 14 W(r,E)dr . (VI-2)

For 298pp, 89y Sly and 40c, the q=08, 2 and 4 moments of the SOM

potentiaL113’42_45 have been used to investigate the properties of the real interaction
implied by Eq. VI-1 whenE <0 (i. e., the shell-model potential which is assumed to be a

Woods—Saxon well). In these calculations, the Brown——R.ho‘j‘6 form for the radial moments
of the imaginary potential was used,

C (E-Eq)?
¢ (VI-3)

q

QO -
B>y = (E—Ep)*+D

so that <r(E)3> w Was assumed to be symmetric about the Fermi energy, Ep. Using the

geometry of the imaginary well given by Eqgs. IV—5 and -6, together with the 21 values of
JW shown in Fig. IV—1, radial moments for the q values noted above were calculated. The

parameters Cq and D ¢ of Eq. VI-3 were then determined so as to give the best fit to these

moments. No assumption was made about the form of the imaginary potential for E > 24
MeV, except that, as E-w, the various moments approach constant values, Cq, as

determined from the fit to the 0 — 24 MeV data.

Because of the simple form assumed for <r(E)q>W, Eq. VI-3, the principal—value
integral of Eq. VI-1 can be evaluated analytically. If one assumes that the Hartree—Fock
contribution to <r(E)q>v has, at most, a linear dependence on E, Eq. VI-1 becomes

C D _(E-Ep)
<r(B)I>, = A +B B+ 19 F2.
E

(VI—4)

Using the geometry of the real well given by Egs. IV-3 and —4, together with the J_ values

of Fig. IV—1, the moments of the real potential, <r(E)q>v, were calculated for q = 0.8, 2
and 4. With the previously determined C q and Dq, the Aq and B q of Eq. VI4 were
determined by least—squares fitting. Values for the various coefficients are given in Table
VI-1.

If one assumes that Eq. VI—4 for the three moments of the real potential also
applies for negative energies, and if one takes a Woods—Saxon form for the interaction,
values of the parameters VO(E), rv(E) and a v(E) needed to characterize the bound—state

region, as well as the neutron scattering potential, can be deduced. These are shown as a
function energy in Fig. VI-1, together with values of Iy the volume integral per nucleon of
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Table VI-1. Constants Used in Evaluating Eq. VI—4.

Constant q= 0.8 =20 =4.0

A, (MeV-tmtY) 83.64 453.57 11896.0
B, (fm9+1) ~0.523 —4.699 —187.4
Cy (MeV-fmt1) 8.33 70.13 2738.4
D, (MeV) 5.15 3.9 3.4

Best—fit values for the various moments of the real and imaginary SOM potentials when
the parameterizations of Eqs. VI-3 and —4 are used, and EF = -0.6 MeV.

39



Fig. VI-1.

0.5
560

500

400}

320

The energy variation of the parameters characterizing the effective
Woods—Saxon well deduced using Eq. VI-4 and the parameters of Table VI-1.
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MeV—£m3) by Eq. IV-12. The strength V  is in MeV.
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this potential. .Iv exhibits the characteristic Fermi Surface Anomaly and, as usual, this
occurs at negative energies. The neutron scattering values for r,» a, and Jv, given by Egs.

IV-3, —4 and -8, are shown as broken lines in the figure for E > 0. It is clear that the
parameters of the Woods—Saxon potential obtained with the DOM reproduce the positive-
energy neutron—scattering results to good accuracy.

If one assumes the shell model spin—orbit strength is given by Eq. IV—2, this can be
combined with the values of VO(E » T,(E) and a.v(E), shown in Fig. VI-1, to predict the

binding energies of the various single particle— and hole—states in 9°Zr with the results
shown under the "SOM" heading in Fig. VI-2. The figure also displays the comparable
experimental data under the heading "EXP". The energies of the Og, /2 ld3 /2 2s /2 and

1d5 /2 particle states were obtained by combining the 90Zr(d,p)91Zr data of Graue et a.l.47

with the binding energy tables48. From this one concludes that they are bound by 4.4, 4.8,
5.5 and 7.1 MeV, respectively. The 0g9/2, 1p1/2’ 1p3/2, 0f5/2 and Of.{/2 hole—state

energies can be obtained from from the 9OZr(f;,d)SQZr results of Kasagi et al.?9. Their
data imply binding energies of 12.1, 13.2, 13.9, 15.2 and 22.3 MeV for these states,
respectively. Finally, one would expect the Oh11 /2 level to become bound in this region,

and there is evidence for a large number of { = 5 states in the stripping data. The center
of gravity of these states can be calculated from a knowledge of the spectroscopic strength,
o, to an /= 5 state at energy E,, using the relationship

e=) LE/) o, (VI-5)

Taking the known values?’ of E; and o, and assuming all the { = 5 strength has been
observed, one concludes that the Oh11 /2 level is bound by about 4.5 MeV.

From a comparison of the SOM and EXP columns in Fig. VI-2, it is clear that
there is good agreement for the states with ¢ <2 — in these cases the rms deviation
between theory and experiment is 400 keV. An increase in the spin—orbit force would
improve the situation for the { =4 and 5 states, provided that the parameters of the
Woods—Saxon well, shown in Fig. VI-1, were not appreciably changed. A stronger spin-

orbit interaction, which would be consistent with the 89Y results of Honore et al.,41 would
lead to tighter binding of the Og9 /2 and Oh11 /2 states, would push up the Og7 /2 state, and

would have a minimal effect on the low—spin levels with £ < 2. However, because the 0f
levels are tightly bound, their calculated values would be less affected by the surface-
peaked Thomas term. Thus the Of7 /2 level would still be too loosely bound, and certainly

the Of5 /2 level would be pushed up. Consequently, a simple increase in the spin—orbit
force alone will not be sufficient to reconcile theory and experiment for all bound states.
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Fig. VI-2. Comparison of experimental (EXP) binding energies (E,) of the particle— and

hole—states in CZr with model predictions. The SOM results were obtained with a
Woods—Saxon well with the parameters of Fig. VI-1. The DOM results were obtained
with the surface—peaked potential added to the Woods—Saxon well as described in the text.

Rm} both cases the spin—orbit potential was of the Thomas form with the parameters of Eq.
—2.
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B. DOM

In the DOM analysis of neutron—scattering data, the usual Woods—Saxon real well
has added to it a surface term whose strength 1s given by Eqs. V-3 and V—=5. In the
bound—state regime we again assume a real surface term whose strength is determined by
these equations. In this case, however, the geometry of the well is taken, somewhat
arbitrarily, to have the values of a_ and I, that arise when E = 0. These terms should be

added to the real Woods—Saxon well listed under DOM in Table V—I. But, as we shall
subsequently discuss, much better agreement with the bound—state data is obtained when
the slight E-dependence of r, isignored. The results shown in Fig. VI-2, under the column

headed DOM, were obtained when the real Woods—Saxon potential for negative energies is
given by

J, = (457.7~341-E) MeV—fm3
r,=13 fm
a, = 0685 fm, (VI-§)

the added real surface potential is a derivative Woods—Saxon form with a strength
determined by Eqs. V-3 and —5 with

r,=1385 fm

a, =0255 fm, (VI-7)

and the spin—orbit interaction has the Thomas form with the parameters of Eq. IV-2.
From Fig. VI-2 it is clear that going from the SOM to the DOM changes the s and d states
little, provides a distinct improvement for both f and g levels, and slightly degrades the
prediction of the h11 /2 binding energy. On the other hand, the 1p, /2 and 1p, /2 binding

energies is slightly better using the DOM than the SOM; for the former, the rms deviation

To use the DOM consistently, one should have taken into account the small energy
variation of I, given in Table V-1. Since the particle states have small values of E,

including this E—dependence would have little effect. On the other hand, the continued
increase of 1, with increasing binding energy has a devastating effect on the prediction of

hole—state binding energies, the rms deviation between theory and experiment is increased
from the constant—r_ value of 1.1 MeV to 3.2 MeV! As an alternative, one might assume

that 1, has the same E—dependence as given in Table V-1, but is symmetric about the
Fermi energy, EF‘ If this is done, the rms deviation of the hole states shrinks to 2.1 MeV
but still remains much worse than the constant-—rv value.

Thus, it is concluded that our attempt to extrapolate the neutron scattering
potential to the bound-state regime meets with only modest success. The energy
independent version of the DOM provides a significantly better picture of the bound—state
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data than do the two energy—dependent versions discussed, and it is also slightly better at
describing the experimental results than is the SOM.

VII. SUMMARY DISCUSSION

When the spin—orbit interaction of Eq. IV-2 is combined with the SOM or DOM
parameters given in Table V-1, a good description of both the elemental zirconium
differential elastic scattering and neutron total cross sections between ¥ < 1 and 24 MeV is
obtained. From Table V-1 it is evident that the volume—integral—per—nucleon of the
DOM real potential is smaller in magnitude and less energy dependent than its SOM
counterpart. This is consistent with the fact that the added surface component, dJ, has

the same sign and energy slope as J ¢ (see Eq. V—6). Thus, although dJ is only about 5%
of the total ‘]v’ it appears that about 30% of the E—dependence of Jv in the conventional

SOM is due to the dispersive—integral contribution. It is also clear from Fig. V=5 that the
use of the DOM should decrease the energy dependence of T, relative to that of the SOM,

and indeed this is true. However, a small but significant dependence of I, remains when
the DOM is used. Finally, for both models, a, is energy independent, and its SOM and
DOM values differ by a small amount that is probably not significant.

In a recent paper,50 the dependence of the SOM I, and ‘]v on mass number was
studied at 8 MeV. Over the range A = 51 to 209, it was found that both r and J_

decrease with increasing A. The 8 MeV values found in the present SOM interpretation fit
nicely into the systematics of Ref. 50, and, moreover, the present a_ is nearly identical to

the average value, 0.67 fm, found for the A =51 to 209 nuclei. Since the SOM real
potential 1s the sum of a smooth Hartree—Fock term and a nucleus—dependent dispersion
contribution, one might have expected a deviation from the smooth A dependence.
However, as already noted, the dispersion—integral contribution is only about 5% of Jv,

and also at 8 MeV dJ s is almost zero.

Turning to the imaginary potential, one sees from Table V-1 that, for both the
SOM and the DOM, - decreases with increasing energy, whereas a_ increases. This

behavior already has been noted in our analysis of the neutron—scattering data for other
nuclei4‘4"r’0_'54 (51\/, 58Ni, 5900, 89Y, 11510 and 209Bi). As expected, Jw increases with

energy, since at higher energies more inelastic channels are open. Up to 24 MeV, we find
no evidence for volume absorption, and this is consistent with the findings of Wang and

Rapaport6 who studied the 24—MeV scattering from separated Zr isotopes. From our work
on elemental zirconium, we can say nothing about the isotopic behavior of the potential.

However, from the work of Wang and Rapaport6 it is clear that Jw increases with
increasing (N —Z)/A (see Eq. IV—12). This result has been found for other nuclei near

closed shells,”~ and it reflects the fact that at closed shells the number of open channels is
at 2 minimum. This finding is contrary to the (N —Z)/A dependence of J, proposed in
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global mode:ls,?’8 and it again points up the fact that the imaginary potential jg
nuclear—structure dependent. Thus, although a global model is probably adequate for the
real potential, it certainly is not for the imaginary interaction. At the very least, a local
model should be employed for the imaginary potential.

When the (N — Z)/A dependence of the potentials, given by Egs. IV—11 and -12, is
invoked, our model describes quite well the elastic scattering from the various 7Zr isotopes
(see Figs. IV—4 and —5). At low ener%ies, compound-nucleus inelastic scattering to
individual levels is predicted to be fairly large, and this agrees reasonably well with the
elemental and isotopic experimental data (see Figs. III-2, IV—6 and IV-7). At higher
energies, our experimental resolution (in the context of the elemental complexity) limits
our inelastic—scatterin% results to groups consisting of contributions from several isotopes.
Inelastic scattering to both the 1.85 — 2.2 MeV and 2.6 — 2.9 MeV groups is predicted to be
% > 100 mb, on the basis of compound nucleus theory, and this is in fair agreement with
experiment. On the other hand, the predicted compound—nucleus cross section for the
excitation of the "941 keV level" is much smaller than observed, clearly indicating a large
direct—reaction component. Its required magnitude is about the same as that found by

Wang and Rapaport6 for scattering to the yrast 2t states in 92Zr and 94Zr.

The real optical-model potentials have been extrapolated to negative energies, and

the predicted binding energies of single—particle and —hole states of 90Zr are compared
with experiment in Fig. VI-2. For the SOM this potential was assumed to have 2 Woods-
Saxon form, with the parameters shown in Fig. VI-1. In this case, the rms deviation
between theory and experiment is 1.4 MeV for the particle states, and the same magnitude
was found for the hole states. For the DOM, the shell model potential is a sum of two
terms: a Woods—Saxon well with the parameters of Eq. VI-6, plus a derivative Woods-
Saxon contribution with a geometry given by Eq. VI-7 and a strength determined by the
dispersion integral (Eqs. V=3 to V-5). The DOM description of the binding energies is
somewhat better than obtained with the SOM model; the rms deviation of the particle

states is 1.2 MeV, and the hole states 1.1 MeV. Delaroche, Wang and Rapaport5 have also
studied the bound—state problem using a DOM determined from a fit to their 9OZr data.

With their model interaction, the predicted particle states are somewhat closer to
experiment — the rms deviation is 0.8 MeV. On the other hand, their predicted hole

states have an rms deviation of 2 MeV.

In determining the binding energies of the 0, states, it was assumed that all the
stripping and pickup strength had been observed. Any missed stripping strength would
:mply looser binding for the particle states, and any missed pickup strength would lead to
tighter hole—state binding. With the exception of the Oh11 /2 level, both our calculation

znd that of Delaroche et al.% predict particle states to be more tightly bound than
zxperiment. Thus, except for the Oh1 1/2 any missed stripping strength would worsen the

zgreement between theory and experiment for the particle states. On the other hand, with
1he exception of the Og9 /2 state, all hole states are predicted to be too tightly bound on the

~asis of both our DOM and that of Delaroche et al. Thus missed pickup strength would
:mprove the agreement between theory and experiment for all the hole states, except the
“Bg /o- For the SOM, shown in Fig. VI-2, only the 1p3 /2 state is predicted to be too

=:ghtly bound, so for this model missed pickup strength would worsen the agreement
~etween theory and experiment. Thus it would appear that, even with the optimum
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scenario on missed stripping and pickup strengths, the extrapolation of the 9OZr scattering
potential to the bound-state regime leads to predictions for binding energies that are

considerably worse than were obtained, for example, from a similar extrapolation™ " in 51V.
In this latter case, the rms deviation between theory and experiment for the particle states
was 550 keV, and for the hole states 700 keV.

The data41 on the neighboring nucleus, 89Y, indicates that the spin—orbit strength

may be slightly larger than given by Eq. IV-2, and indeed two recent ::ma.'lysess’6 of
sirconium data have used a larger value for this interaction. Although the values of the

spin—orbit parameters (Eq. IV—2) are within the uncertainties given in the 39y analysis,
we have redone the DOM interpretation using the strength, Eq. V-9, determined from

studies of this neighboring nucleus."‘1 The resulting best—fit parameters of the real
Woods—Saxon and imaginary derivative Woods—Saxon wells are given in Eq. V—10. The
low—energy neutron total cross sections predicted by this model are substantially smaller
than experiment (see Fig. V—6). This shortcoming is mainly due to the small value of r_

at low energies in this model. Models based upon low—energy data, for example that of
Moldauer55, generally lead to 1, values in the neighborhood of 1.3 fm. When the

potentials described by Eqs. V-9 and —10 are extrapolated to the bound region, and E=0

values are used for Vs o v Tw and A all states except the 1p3 /2 are predicted to be less

tightly bound than experiment because of the very slow increase in JV with decreasing

energy. This actually lowers the rms deviation between theory and experiment for the
particle states to 0.8 MeV, but worsens the predictions for the hole states to an rms
deviation of 1.7 MeV. Thus, if Zr data are analyzed using the DOM the parameters of
Table V—1 and the spin—orbit strength of Eq. IV-2 should be used.

Finally, most of the parameters of the above SOM and DOM exhibit energy depen-
dencies that are reasonably represented by linear expressions. These are clearly first
approximations, valid only over the energy range of the present interpretations. They
should not be used to extrapolate to far higher energies. It is reasonable to expect that
energy—independent values are asymptotically approached above 20 to 25 MeV. This
transition may already be under way between 10 and 24 MeV, but it is impossible to tell
due to absence of experimental information in this energy region. For the calculation of
neutron properties for applied purposes, the SOM of this work should be quite suitable to
~ 25 MeV; i.e., over the energy range of primary applied interest. The introduction of the
additional complexities of the DOM will mitigate some of the energy dependencies of the
SOM parameters, but will not entirely remove them. Thus the use of the DOM is probably
not warranted for engineering applications; rather, its main value is in the fundamental
understanding of structure and the neutron interaction with the zirconium nuclei.
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