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Nuclear Data and Measurement Series 
 
 

The Nuclear Data and Measurement Series presents results of studies in the field 
of microscopic nuclear data. The primary objective is the dissemination of information in 
the comprehensive form required for nuclear technology applications. This Series is 
devoted to: a) measured microscopic nuclear parameters, b) experimental techniques and 
facilities employed in measurements, c) the analysis, correlation and interpretation of 
nuclear data, and d) the compilation and evaluation of nuclear data. Contributions to this 
Series are reviewed to assure technical competence and, unless otherwise stated, the 
contents can be formally referenced. This Series does not supplant formal journal 
publication, but it does provide the more extensive information required for technological 
applications (e.g., tabulated numerical data) in a timely manner. 
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ABSTRACT 
 
Although its applicability is not universal, the lognormal distribution is frequently used to 
represent physical parameters that are inherently positive and are not well known, i.e., 
that have large errors. In particular, arguments drawn from Bayesian statistics suggest 
that the lognormal function is the optimal choice of a probability distribution for those 
cases where the only knowledge possessed about a particular parameter is an estimate of 
its mean value and associated error. In this report it is demonstrated by a simulation 
exercise that the lognormal function represents very well the outcomes of repeated 
measurements that are subjected to a variety of multiplicative disturbances that, by their 
very nature, preclude the observation of negative values. In the present study, a simplified 
model of measurement is defined and it is then subjected to numerical analysis using the 
Monte Carlo method. There is no attempt to prove rigorously that the lognormal 
distribution results as the unique consequence of assumptions about the defined model, 
nor are other more complex models of measurement investigated. In any event, it is not 
possible to produce a proof by the use of anecdotal information, e.g., by analyzing the 
results of repeated Monte Carlo trials. Nevertheless, the simulation study described here 
does provide strong evidence that for many practical situations the lognormal distribution 
can be used to represent the probable outcome of measurements of positive quantities. 
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1.  Introduction 
 
 

Most parameters that represent physical quantities are either inherently positive or 
can be redefined to be positive, e.g., as in the case of temperature. Mankind’s attempts to 
determine precise, enduring values for these parameters through experimentation or other 
means are inevitably thwarted by a number of perturbing factors. As a consequence, 
repeated measurements by a particular investigator, or determinations by various 
investigators, inevitably lead to varying results. It is useful to have an understanding of 
the underlying probability functions that govern measurement processes since then it may 
be possible to predict the impact of known perturbations and to estimate the amount of 
effort that might be required to determine a particular parameter to some desired level of 
accuracy. 

 
In earlier communications [SNW2001,SNW2002] the arguments supporting the 

use of the lognormal distribution to represent fundamental physical quantities that are 
inherently positive and characterized only to the extent of possessing estimates of their 
mean values and uncertainties were discussed. This previous work relied upon results 
from earlier mathematical investigations by Jeffreys [Jef1939], Shannon [Sha1949], 
Jaynes [Jay1983], and Froehner [Fro1997]. Furthermore, it was demonstrated through 
Monte Carlo simulation that physical parameters related to primary ones by a variety of 
well-defined mathematical relationships are quite well represented by lognormal 
functions. Illustrative examples from radioactivity decay, radiation transport, and 
astrophysics [Hix+1999] were considered. 

 
The focus in the present work is somewhat different. Here we are not concerned 

with uncertainty propagation in the conventional sense. Instead, we examine the impact 
of natural random perturbations associated with realistic measurement procedures 
developed to ascertain values for single parameters. We do not resort to the Bayesian 
arguments used to support the lognormal function but rather actually demonstrate how 
distributions that can be well represented by the lognormal function emerge to describe 
the outcomes of repeated attempts to determine values for an individual parameter. 

 
Section 2 of this report offers a brief review of the properties of the lognormal 

distribution. Section 3 describes the simplified model of measurement that was chosen 
for the present simulation exercise. Section 4 gives details about the Monte Carlo 
simulation procedure employed. Section 5 provides results from the numerical exercises. 
Section 6 interprets and discusses these results. Finally, Section 7 offers some 
conclusions drawn from the present study. 
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2.  Brief Review of the Lognormal Distribution 
 
 

Earlier communications from this laboratory discuss in considerable detail the 
motivations for using the lognormal function rather than the normal (Gaussian) function 
in certain applied situations [SNW2001,SNW2002]. These will not be repeated. 
However, it is useful to summarize the properties of the lognormal function in this report 
for the convenience of the reader, since some of the key formulas have been employed in 
the present study [Smi1991]. 

 
For a single random variable, this distribution takes the normalized form 
 

p(Q) = (2πS2 Q2)-½ exp [- (ln Q - M)2/2S2]     (Q > 0) .                     (1) 
 
The mean value and standard deviation are obtained by using the formulas 
 

m =  exp[M + (S2/2)]                                                 (2) 
 
and 
 

s2 = m2 [exp (S2) - 1] = exp(2M + 2S2) – exp(2M + S2).                   (3) 
 
Conversely, if the mean value m and standard deviation s for this distribution are given, 
then those parameters M and S that characterize the lognormal function can be derived 
from the expressions 
 

S2 = ln [1 + (s2/ m2)]                                                (4) 
 
and 
 

M = ln m – (S2/2) .                                                 (5) 
 
When the probability function for Q is assumed to be lognormal, then the distribution for 
y = ln Q is normal [Smi1991]. The converse is also true. In this sense, these two 
functions are conjugates of each other. The lognormal function clearly exhibits the 
desired property of non-negativity over the variable range for which it is defined (Q > 0), 
no matter how large a standard deviation is involved. 
 

It is well known that the normal probability function applies to situations where a 
random variable is influenced by many additive disturbances. This, in fact, is the basis for 
the well-known Central Limit Theorem [Smi1991]. Consequently, it is reasonable to 
suppose that a series of positive multiplicative disturbances might form the basis for the 
lognormal distribution. A series of multiplicative disturbances for parameter Q 
corresponds to a series of additive disturbances for ln Q, so we are led to invoke the 
relationship between the distributions for Q and ln Q described above in supporting this 
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conclusion. In fact, this indeed is the case and the core of the present study is a direct 
demonstration of this phenomenon. 
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3.  A Simplified Model of Measurement 
 
 

Let Q be a physical quantity that is to be determined. Suppose that Q0 > 0 is 
viewed as representing the “true value” of Q. This precise value is elusive due to the 
uncertainty of “real life” attempts of humans to determine it. Thus, for demonstration 
purposes let us assume that attempts to determine Q precisely are thwarted by n 
independent, random perturbations. Furthermore, to insure that no attempt to determine Q 
ever results in a negative number (which is physically unreasonable), let us assume that 
these physical disturbances can be represented by inherently positive multiplicative 
factors fi (i=1,n). Thus, in this model any particular experiment should yield the result 
 

Q = Q0 Πi=1,n fi .                                                      (6) 
 
Furthermore, we require that the mean values <fi> for all i=1,n are equal to unity, since 
were it otherwise this would indicate a bias (systematic error). For convenience, we 
choose to avoid complicating the discussion by getting involved in the distinctions 
between random and systematic errors. 
 

For present purposes, it is assume that fi falls in the range 1-αi < fi < 1+αi and that 
within these ranges each fi is governed by a continuous uniform distribution [Smi1991]. 
For convenience, we refer to αi as the perturbation parameter for the ith perturbation. 
Clearly 0 < αi < 1, otherwise fi would become zero or negative. The assumption of a 
continuous uniform distribution need not be a limiting one, but it makes sense to assume 
that the uniform distribution applies in many practical situations because, from a 
Bayesian point of view, it is the correct distribution for any parameter that is known to 
fall within a certain range but for which absolutely no other information is available 
[Jay1983,Fro1997]. For the limits mentioned above, the mean value is 

 
m0i = <fi> = 1                                                          (7) 

 
and the standard deviation is 
 

σi = [ αi
2 / 3]1/2  .                                                      (8) 

 
We could assume that for each fi there is a distinct value αi. Although this feature 

surely provides a model closer to reality, since the various sources of disturbance need 
not have the same magnitude, it results in more complicated numerical analysis. The 
additional complexity adds little new insight to justify the computational penalty. 
Therefore, it has been assumed that αi = α. Thus the same perturbation parameter is 
chosen for each i=1,n. Furthermore, one must assume that there is some practical limit for 
the product nα as n increases. That is as the number n of perturbations becomes larger, 
the value α needs to decrease. 

 



 12 

If the perturbations above are numerous and each relatively small, then the 
constraints on complexity imposed by the model culminating in Eq. (6) could be eased. 
Thus, we can consider a more general model relationship of the form 

 
Q = Q0 F(x;f) ,                                                      (9) 

 
where f is the vector of perturbations described above, x is a the vector representing other 
constant (non-random) parameters of the model, and F is a function which defines the 
experimental model. As discussed above, we require that F(x;1) = 1, where the vector 1 
symbolizes that each element in the array f has the value unity. The following 
approximation to Q, based on a first-order Taylor series approximation to Eq. (9), can 
then be considered 
 

Q ≈ Q0 F(x;1) [ 1 + ∑i=1,n (∂F/∂fi)0 ∆fi] ≈ Q0 F(x;1) Π i=1,n [1 + (∂F/∂fi)0 ∆fi] .     (10) 
 
The subscript zero implies calculation of the indicated partial derivative for the condition 
f = 1. The differential increment ∆fi correspond to a perturbation of fi from unity (positive 
or negative) with a maximum variation of magnitude αi. This clearly brings us to the 
same point as is indicated by Eq. (6). Thus, the present study deals solely with Eq. (6), 
with the tacit understanding that more complex models could be devised. Evidently, these 
would lead us to reach the same conclusions. 
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4.  Monte Carlo Simulation Procedure 
 
 

Simulation by the Monte Carlo procedure is fairly straightforward. A sequence of 
“histories” denoted by the index “k” is investigated. For a specific k, a collection of 
perturbation factors fik for i=1,n is generated by random selection in the interval 1-α < fik 
< 1+α according to the continuous uniform distribution. Thus, 

 
Qk = Q0 Πi=1,n fik                                                      (11) 

 
is the value of Q produced in the kth history. The total number of histories pursued is 
assumed to be K, i.e., k=1,K is the range of compiled histories. The mean value for Q that 
can be deduced from this exercise is 
 

m ≈ ∑k=1,K Qk / K                                                   (12) 
 
The corresponding standard deviation is 
 

s ≈ [∑k=1,K (m - Qk)2/ K]1/2  .                                         (13) 
 
Approximate equality comes about because of the fact that K is finite. The larger the 
value of K the closer these Monte Carlo results will approach the true parameters of the 
underlying distribution. There is no disputing the fact that this Monte Carlo procedure 
will generate an empirical distribution function. The issue to be examined here is whether 
for all practical purposes this distribution can be approximated by or actually approaches 
a lognormal function. 
 

In order to proceed with the numerical analysis, it is necessary to establish a grid 
structure so that all the obtained Qk values can be assigned to their appropriate grid 
intervals. This can be done best by selecting values QL and QH such that for every Qk 
 

QL < Qk < QH .                                                     (14) 
 
This can be done quite easily after the K sampling cycles have been completed and the 
results are tallied. Then, one decides on the number of grid intervals N. Each of these 
equal intervals will have width 
 

∆Q = (QH – QL)/N .                                                 (15) 
 
The grid midpoints are defined by the formula 
 

Qj = QL + (j – ½)[(QH – QL)/N]    (j=1,N) .                      (16) 
 
It is important to select N so that N << K. Then one can expect to obtain sufficiently large 
tallies in the dominant grid intervals to provide some insight into the nature of the 
probability distribution resulting from the Monte Carlo sampling exercise. 
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5.  Numerical Results 

 
 

For the purpose of the present simulation exercise, the values n = 10, K = 1000, 
and N = 10 were selected. Furthermore, it was assumed, with no loss of generality, that 
Q0 = 1. Calculations were then carried out for values of α = 0.1, 0.2, 0.3, and 0.5. All of 
these calculations were performed using an EXCEL spreadsheet developed especially for 
this purpose. The procedure followed for a specific value of α is indicated below. 

 
The first worksheet was used to generate a ten-column by 1000-row array of 

random numbers in the range (a,b) using the EXCEL library function RAND()*(b-a)+a. 
The constants a and b were selected to be consistent with the selected values of α. For 
example, for α = 0.1, a = 0.9 and b = 1.1. The mean value is always unity, but the 
standard deviation depends on a and b. Values for these parameters are given for each 
considered value of α in Table 1.  Within each of the 1000 rows, the random values in the 
above-mentioned ten columns were multiplied to generate a value that was then stored in 
the 11th column. These values correspond to the various Qk, in accordance with Eq. (11). 
A total of 1000 of them are generated by this procedure. This column of values was 
pasted into a fresh worksheet for further analysis. Values of m and s were then 
determined from this array using the EXCEL library functions AVERAGE and STDEV, 
respectively. From these, parameters S and M were calculated using Eqs. (4) and (5), 
respectively. The 1000 random values in the array were then sorted from smallest to 
largest using a data sorting routine of EXCEL. The selected grid values of Q were 
included in the sorting process to conveniently define the grid boundaries within the 
table. The tallies of random values within each of the ten grid limits were determined and 
collected into a separate region of the worksheet for further processing and eventual 
plotting. The parameters M and S were used to define a corresponding lognormal 
function, according to Eq. (1). The only difference is that a multiplicative constant C was 
introduced in order to facilitate comparison between the discrete probability distribution 
generated by Monte Carlo simulation and the lognormal function. 

 
The results of this analysis are shown in Tables 2-5 and Figs. 1-4. It is seen that 

the agreement is remarkably good given the general coarseness of the grid structure and 
limited number of traced histories. Note that for α = 0.1, 0.2, and 0.3, Eq. (12) led to m ≈ 
1 as expected. However, due to the limited number of histories and very skewed nature of 
the distribution obtained for α = 0.5, the present procedure led to m ≈ 0.91 in that case. 
 
 An interesting observation can be gleaned from a close inspection of Tables 1-5. 
The standard deviation of the distribution for Q generated by Monte Carlo simulation is 
approximately equal to the square root of ten times the square of the standard deviation of 
the uniform distribution governing each of the perturbing factors. This apparent quadratic 
summing of errors is a well-known phenomenon in statistics, so it is very revealing to see 
it demonstrated once again in the present exercise. What is also remarkable is that this 
effect occurs even though the ten contributing perturbation factors included in the present 
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Monte Carlo demonstration exercises are governed by uniform distributions while the 
composite distribution for Q is evidently lognormal, or at least very nearly so. 
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6.  Discussion 
 
 

A simulation demonstration such as the present one does not definitively prove 
that the lognormal function is the appropriate choice for a probability distribution in the 
analysis of inherently positive physical quantities. Counterexamples are not hard to come 
by. For example, it is well known that the appropriate distribution for rare, discrete events 
is the Poisson distribution, and that the binomial distribution describes the statistics of 
small discrete samples under conditions frequently encountered in nature. However, in 
those situations where the physical quantity is positive, can assume any value (not 
discrete), and is known only to the extent that it’s mean value and uncertainty can be 
estimated, the present exercise suggests that the lognormal function is well suited. 

 
The present model involves a large number of repeated determinations of a 

physical quantity under conditions where the measured value can be perturbed by a 
number of factors that can be represented by multiplicative constants. In reality, matters 
are generally more complicated than this. However, it is remarkable that distributions that 
appear to be quite well represented by lognormal functions emerge from the simulation 
process even when the disturbances are quite large. 

 
Finally, it could be argued that the Central Limit Theorem should be invoked to 

prove what has been demonstrated in the present investigation. One simply considers the 
logarithms of the physical quantities, transforms the multiplicative disturbances into 
additive ones and ends up with a situation similar to the one described by Smith 
[Smi1991]. This contention is certainly true. However, a direct demonstration of the 
lognormal distribution serves to strengthen one’s conviction that this function is an 
appropriate choice for the analysis of inherently positive physical data in situations such 
as those frequently encountered in nuclear science. 
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7.  Conclusions 
 
 

A model in which the measurement of inherently positive physical quantities is 
accompanied by a series of multiplicative disturbances leads, via Monte Carlo simulation, 
to the conclusion that the lognormal probability function is extremely useful for analysis 
of the results of common experimental measurements. This result is very useful because 
from a practical point of view in nuclear science it is generally impossible to repeat a 
measurement a sufficient number of times to discern the nature of the underlying 
distribution by empirical means alone. One is forced to suggest the functional form for 
the distribution based either on postulates or more fundamental theorems, as is the 
Bayesian approach, or by direct demonstration via the Monte Carlo method as has been 
done in the present investigation. 
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Tables 
 
 
The parameters in the tables below are defined as follows: 
 
Q:  Value of the measured quantity at the midpoint of the grid interval 
 
P(Q):  Tally of Monte Carlo histories falling in the indicated grid interval 
 
LogNorm(Q): Lognormal function calculated at midpoint value of Q 
 
a:  Lower limit of the uniform distribution for fi 
 
b:  Upper limit for the continuous uniform distribution for fi 
 
m0:  Mean value of continuous uniform distribution for fi (equals unity) 
 
sig:  Standard deviation of continuous uniform distribution for fi [Eq. (8)] 
 
m:  Q distribution mean value from Monte Carlo sampling [Eq. (12)] 
 
s:  Q distribution standard deviation from Monte Carlo sampling [Eq. (13)] 
 
M:  Parameter of lognormal function calculated from m and s [Eq. (5)] 
 
S:  Parameter of lognormal function calculated from m and s [Eq. (4)] 
 
C:  Normalization constant for lognormal function 
 
 
Table 1:  Parameters of the continuous uniform sampling distributions for fi 
 
                 α  
 0.1 0.2 0.3 0.5 

a  = 0.9 0.8 0.7 0.5 
b  = 1.1 1.2 1.3 1.5 

m0  = 1 1 1 1 
sig  = 0.057735 0.11547 0.173205 0.288675 

  



 21 

Table 2:  Results of the simulation exercise for α = 0.1 
 
LogNorm(Q) = (C/S/Q)*EXP(-(LN(Q)-M)*(LN(Q)-M)/2/S/S) 
     

Q P(Q) LogNorm(Q)   
0.575 14 6.506860154   
0.725 102 102.347509   
0.875 286 293.896979   
1.025 321 314.6657809   
1.175 177 182.8035318   
1.325 73 71.48264588   
1.475 18 21.46998248   
1.625 7 5.391810664   
1.775 2 1.198132375   
1.925 0 0.244932553   
Sums 1000 1000.008165   

     
m  = 1.01022 QL  = 0.5  
s   = 0.186286 QH  = 2  
S   = 0.182862 Delta Q  = 0.15  
M   = -0.00655    
C   = 59.846    

 
 
Table 3: Results of the simulation exercise for α = 0.2 
 
LogNorm(Q) = (C/S/Q)*EXP(-(LN(Q)-M)*(LN(Q)-M)/2/S/S) 
     

Q P(Q) LogNorm(Q)   
0.42 73 52.946301   
0.66 231 252.5928675   
0.9 288 295.0779327   
1.14 206 201.2752937   
1.38 102 107.6363908   
1.62 57 51.15944864   
1.86 28 22.96928491   
2.1 8 10.05979345   
2.34 4 4.37553549   
2.58 3 1.909650227   

Sums 1000 1000.002499   
     

m   = 0.997575 QL  = 0.3  
s   = 0.370052 QH  = 2.7  
S   = 0.359062 Delta Q  = 0.24  
M   = -0.06689    
C   = 95.905    
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Table 4: Results of the simulation exercise for α =0.3 
 
LogNorm(Q) = (C/S/Q)*EXP(-(LN(Q)-M)*(LN(Q)-M)/2/S/S) 
     

Q P(Q) LogNorm(Q)   
0.35 184 183.1844028   
0.75 365 387.6857527   
1.15 258 231.7070529   
1.55 98 108.5820365   
1.95 51 48.50070507   
2.35 25 21.84017039   
2.75 7 10.09717136   
3.15 5 4.818867057   
3.55 5 2.375551602   
3.95 2 1.208135928   

Sums 1000 999.9998463   
     

m   = 1.006481 QL  = 0.15  
s   = 0.562553 QH  = 4.15  
S   = 0.521402 Delta Q  = 0.4  
M   = -0.12947    
C   = 158.7476    

 
 
Table 5: Results of the simulation exercise for α =0.5 
 
LogNorm(Q) = (C/S/Q)*EXP(-(LN(Q)-M)*(LN(Q)-M)/2/S/S) 
     

Q P(Q) LogNorm(Q)   
0.5 695 769.6201866   
1.5 200 160.7785245   
2.5 64 43.23146796   
3.5 30 14.85635096   
4.5 8 6.022154161   
5.5 0 2.745184517   
6.5 1 1.366314752   
7.5 1 0.728206699   
8.5 0 0.410046989   
9.5 1 0.24157757   

Sums 1000 1000.000015   
     

m   = 0.912657 QL  = 0  
s   = 0.920956 QH  = 10  
S   = 0.837997 Delta Q  = 1  
M   = -0.44251    
C   = 337.2201    
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Figures 
 

Some explanation is required in order to help the reader to understand Figs. 1 – 4 
below. The plots that appear in Figs. 1-4 are derived from the numerical values in Tables 
2-5, respectively. The plotted solid square “data” points are the integer values for the 
Monte Carlo tallies of histories assigned to each of the ten defined intervals. These points 
are plotted at values of Q corresponding to the midpoints of these intervals. Note that the 
sum of the tally values is 1000 since 1000 histories were traced in each of these 
simulations. The value for the corresponding lognormal function is plotted at the same 
value of Q, but the data point itself is not shown. Instead these “invisible” points are 
connected with solid straight lines (no smoothing). These lines serve as an “eye guide” 
for the plotted lognormal function. The floating normalization constant for the lognormal 
function was chosen so that the sum of the ten calculated values of the lognormal 
function is approximately equal to 1000. 
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Figure 1:  Simulation results for fi = 0.9 ! 1.1 (α = 0.1) 
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Figure 2:  Simulation results for fi = 0.8 ! 1.2 (α = 0.2) 
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Figure 3:  Simulation results for fi = 0.7 ! 1.3 (α = 0.3) 
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Figure 4:  Simulation results for fi = 0.5 ! 1.5 (α = 0.5) 
 




