MEASUREMENT OF THE 51V(n,p)51Ti REACTION CROSS SECTION FROM THRESHOLD TO 9.3 MEV BY THE ACTIVATION METHOD*

by

Donald L. Smith, James W. Meadows and Ikuo Kanno**

Applied Physics Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439
U.S.A.

ABSTRACT

The activation method was used to measure cross sections for the 51V(n,p)51Ti reaction from near threshold at 2.856 MeV up to 9.267 MeV. Forty-five approximately-monoenergetic cross section values were obtained; they provide complete, detailed coverage of this energy range with FWHM resolutions of ~ 0.08 to 0.1 MeV below ~ 4.7 MeV and ~ 0.14 to 0.28 MeV above this energy. These data span $\sim 90\%$ of the total response for the standard 235U thermal-neutron-induced-fission neutron spectrum and $\sim 86\%$ of the total response for the standard 252Cf spontaneous-fission neutron spectrum. The present experimental cross sections are significantly larger (e.g., by $\sim 50\%$ at ~ 8 MeV) than the corresponding values from the ENDF/B-V evaluation which was derived from nuclear model calculations. The calculated integral cross section (based on the present work) for the 252Cf spontaneous-fission neutron spectrum agrees very well with a recently reported measurement (the calculated value is only $\sim 2\%$ smaller). Corresponding agreement with the equivalent experimental value for the 235U thermal-neutron-induced-fission neutron spectrum is less favorable (the calculated value is $\sim 20\%$ larger).

* This work supported by the U. S. Department of Energy.

** Exchange Associate. Permanent Address: Research Reactor Institute, Kyoto University, Kumatori-Cho, Sennan-Gun, Osaka 590-04, Japan.