FAST-NEUTRON-SPECTRUM MEASUREMENTS
FOR THE THICK-TARGET \(^9\text{Be}(d,n)\(^{10}\text{B}\)
REACTION AT \(E_d = 7 \text{ MeV}\)\(^*\)

by

D. L. Smith, J. W. Meadows and P. T. Guenther

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
USA

ABSTRACT

Spectra of neutrons with energies >800 keV which are emitted from a metallic beryllium target that is thick enough to completely stop 7-MeV incident deuterons are measured using organic scintillators and the pulse-beam time-of-flight method. Data are acquired for twenty different emission angles in the laboratory over the range 0-155 deg. The resulting information on the energy/angle detail of neutron emission is then employed in calculations which are performed in order to examine certain effects of the anisotropic neutron production on typical measurements of integral fast-neutron reaction cross sections.

\(^*\text{This work supported by the U.S. Department of Energy.}\)