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A Multi-physics simulation tool Applications

ENGINE 1s equipped with advanced mathematical models based on S | Mechani Heat Transfer Phase Transformations
) b o v tructura ecnanics g
finite element and particle based methods (En hanced Phase Field MEthOd)

* Solves the steady state and time dependent heat equation
* User defined initial and boundary conditions of
convective/radiative heat transfer ,constant temperature or adiabatic

* The model solves the Cahn-Hilliard equation for the diffusing species and the Allen-Cahn equation for structural

* [t provides a 3D platform for applying advanced physical » Linear elasticity with incremental strain theory

d 1 . 1 * Able to simulate elastic, creep, thermal , swelling strains and transformations.
models at various scales. residual or externally applied stress * Free energy functional consists of chemical energy, surface energy, elastic energy, etc.

e The code consists of the followin g arts:  External stress and displacement boundary conditions are user defined type * Shape factors are used for each node in order to model the surface energy term accurately, WITHOUT requiring
'  Large deformation simulations can be performed using a very fine mesh structure at interfaces.

- Material and 1nitial/ boundary condition Speciﬁcations * The algorithm largely eliminates re-meshing requirements.

) Geometry SP ecifications and 3D surface mesher » Sample simulations below show the nucleation and growth of the precipitates in supersaturated media.

- Material properties module « If the medium isotropic, spherical precipitates results as shown in the upper figures.
Verification Exercises * A strong anisotropy in surface energy term is applied for the simulation given at the lower figures. As a result,

- System discretization, gauss quadrature integration of system of Verification Exercises platelet-shape precipitates grow in y-direction.

equatlons, and matrix SOlVGI' * The figure on the left shows the x-stress distribution around * The figure on the left shows the temperature distribution of the

a void under 50 MPa. applied tensile load in x direction. power producing fuel pin with the applied convective boundary
Stress concentration is observed near the boundary, normal condition at the clad outer surface. Coolant temperature is 300 °C.

Ad Va nta ges to the applied stress.
: : * The figure on the right shows a U-shaped support structure, thitAati - : -
* Able to mesh Complex geometrles in 3D * The figure on the right shows the axial stress distribution of the fuel pin . pvective heating at 600 °C and cooling at 300 °C are applied at Precipitation in isotropic medium

e Fast pa rticle gener ation at Sy stem boundaries via front trackin g al gor ithm (fuel pellet and clad) under the applied temperature gradient. Stress is the joint surfaces . Nucleation 100 time steps 250 time steps

compressive at the inner hot regions and tensile at the outer regions

* Fast hexahedral mesh generation over the volume. for both fuel pellet and cladding, « The predicted temperature distributions are satisfactory compared
* The hybrid algorithm largely eliminates re-meshing and advantageous in “The predicted stress distributions are satisfactory compared with with the analytical solutions, for both cases.

modeling moving boundary problems the analytical solutions for both cases.

* Numerical stability and able tackle with non-linearity

* The code 1s verified against analytical solutions for various physical phenomena

The results shows that the approach is promising and satisfactory.

X-stress around a void (MPa) Fuel pin axial stress Fuel pin temperature (°C) U-shape support

Sample Surface Meshing Numerical Algorithm (MPa) structure temperature (°C) Precipitation in a strongly anisotropic medium

Nucleation 200 time steps 420 time steps

[Input Specifications ]

[ Particle generation ]
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Hexahedral mesh generation
Boundary condition and initial condition
specifications

System boundary specifications CraCk PrO pagation
(Enhanced Phase Field Method)
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Line Dislocation Dynamics
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* The model solves the equation of motion to predict the movement of the dislocations. Viscous drag and driving
force terms are included.

* Dislocations are divided into lines and each line is represented via a pair of nodes. Finite element integration is
performed over the line segments.

* Dislocations are allowed to glide on their slip planes only under the applied shear stress.
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PSS Shape Function specifications
I AVIAVARYARN S A AR AN .
AVAVAVAVAVAVAYLY: Integration over the hexahedral mesh . . .
‘_L ‘ 8 * The model solves Allen-Cahn equation to predict the crack growth behavior.
; = » Slip orientation and its local variation, initial crack geometry and external stress are user defined.
- N * Free energy functional includes elastic, surface energy, and double well potential. Plastic energy term can also be
added.

Constitutive model specifications . - . - -
. * Solution of Allen-Cahn equation simulates the crack propagation towards the direction of minimum energy.
/Closure relations

* The simulation result given in the figure below shows the formation and the glide of the dislocation loops via Frank-
Read sources. The barrier applied to the outer surface tends to limit the outward dislocation motion and dislocation

| |
-Eﬁ?ﬁ-"ﬁ“{ﬁﬁ * The model is applied for a brittle material under the applied vertical tensile stress as given below. Crack tends to pile-up occurs near the barrier.
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.-- J*ﬁgﬂifgﬁéﬁﬁ'éia-.l propagate normal to the applied stress and on the favorable slip bands. The crack growth rate rapidly increases with . . . .
! A TATTATS R L AT * The results are consistent with experimental observations.
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