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Objectives of the study
To examine the observed phenomenon is realistic by ABAQUS FES together with known materials properties and fiss.-product-induced fuel swelling. 

To obtain the creep-rate constant for measure U-Mo alloy fuel showing fission-induced creep.
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Conclusions and future work
ABAQUS finite element simulation confirms that  the fuel mass 
transfer is indeed caused by the creep mechanism. 

ABAQUS simulation produced the best-fit creep rate constant for 
U-10Mo alloy fuel 500x10-25 cm3/MPa, which lies between pure 
uranium and MOX, and greater than other ceramic uranium fuels.

Extension to U-Mo/Al dispersion fuels is planned to obtain the 
creep rate constants (A values) for interaction layers and Al matrix.
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The US GTRI-CONVERT Program (also known as RERTR) has 
been developing U-Mo dispersion (Mo=6-10wt%) in Al matrix or 
U-10wt%Mo foil for conversion of high-power research and test 
reactors from HEU fuel to LEU fuel.

U-Mo alloy, denser than currently qualified high-density U3Si2, 
can provide enough U-mass to compensate lowered enrichment.

U-Mo fuel undergoes fission-induced creep both in monolithic 
(foil) and particle-dispersion forms.

Fission-induced creep is an effective 
mechanism to avoid bucking in a thin
plate geometry by relieving stresses. 
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Schematic of ATR mixed fuel element
U-Mo fuel has been extensively tested in the ATR.

R6R018(B7)-RERTR9
Average FD = 7.1E21 f/cc
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Average FD = 7.0E21 f/cc
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Data for ABAQUS simulation
ATR core

Bulge region

Al 6061 cladding property data

1.E = 66 GPa
2.Poison’s ratio = 0.34
3.Cladding yield strength = 280 MPa
4.Strain hardening exponent = 0.13

U-Mo

1.E = 85 GPa, Poison’s ratio = 0.34
2.Fuel swelling:

3.Fuel swelling to true strain conversion:
4.Creep:                          

A: to be obtained by ABAQUS simulation 

FE modeling for L1P04A

(a) Schematic of symmetric cladding monolithic 
fuel plate

(b) Finite element mesh shown only for a 
quadrant:

Generalized plane strain condition
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Parametric study for creep rate constant at EOL of L1P04A

(a) Fuel swelling (b) Von Mises stress

 Best fit is obtained with creep rate constant (A) 
A = 500x10-25 cm3 MPa-1   fAs 1
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Comparison of fission enhanced creep rate constants 
for various uranium fuels
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where the creep rate constant A is in cm3 MPa-1.
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Fuel relocation during irradiation by creep of IL, UMo

V6022M RERTR-4
Average FD = 5.6x1021 f/cc
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Measured and calculated fuel swelling across width of
L1P04A (C6) from RERTR-9; average FD = 5.39E21
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Simulation procedure

Time-dependent IL volume will be obtained in the mesh.
Using the same A from the monolithic case, estimate As for IL 
and Al.
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