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Introduction

m lonic liquids (ILs) are unique solvents with many interesting properties
- low volatility, large electrochemical window

m [Ls are becoming of great interest for advanced nuclear fuel cycles
- solvent extraction, electrochemical separations

m Many |ILs complex very weakly with metals
- not good for separations!

m Recently, Nockemann et al. designed a
task-specific IL for complexing metals’

- betainium bis(trifluoromethylsulfonyl)imide

- betainium depronates to form the zwitterion
betaine when coordinating with a metal

m Molecular simulation can help us understand )
the interactions of actinides in ILs?

- large scale classical simulations of uranyl(VI) and plutonyl(VI) in mixtures
of 1-ethyl,3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf,N]) with
water and betaine (BET) using a recently developed actinyl(VI) force field?

Potential of Mean Force

m [he potential of mean force (PMF) tells us the relative free energy change along

a reaction coordinate, r
- center-of-mass separation between uranyl and betaine % —r— W
r = center-of-mass

m Progressive addition of betaine to uranyl in bulk [EMIM][Tf,N]
in the presence and absence of water separation between
uranyl and betaine

- Dbetaine is a much stronger ligand than Tf,N and water
- relative free energy change 50-60 kd/mol less in the presence of water
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Average Coordination Numbers

m Large scale simulations of 0.1 M actinyl(VI) uranyl ° '

A--A betaine

solutions in [EMIM][Tf,N] with varying amounts |a .awater
of betaine and water A-ATEN
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betaine to actinyl ratios of 0, 1, 2, 3, and 4 olutonyl
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m Tf,N only coordinates the actinyl in the absence | ’TiN'
of enough water and/or betaine to fill the first total
solvation shell

m Betaine displaces both Tf,N and water

m Oxygen atom coordination number increases
from 5 to 6 with increasing amounts of betaine

m No significant difference between uranyl and plutonyl

ligand strength:
betaine > water > TfsN

oxygen atom coordination number

# betaine per actinyl

Distribution of Coordination Environments

m Broad distribution of coordination environments narrows with increasing betaine
concentration
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W = water, B = betaine, T = Tf,N; OW6BOT = 0 water + 6 betaine + 0 Tf,N

Dimeric Complexes

m In pure [EMIM][Tf,N], Tf,N-bridged dimeric (and trimeric) complexes can form?

- Just under half of the actinyl cations are found in multi-actinyl complexes

m The addition of even small amounts of water displaces Tf,N from the first solvation
shell and destroys the complexes

m [he addition of betaine creates more strongly bound betaine-bridged complexes
with shorter U-U separations

- similar dimer found in the crystal structure*
m [he addition of water has no significant effect on the betaine-bridged complexes
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Dynamics

m The mean square displacement (MSD) tells us about the dynamics of the system
- calculate the diffusion coefficient using the Einstein relation

MSD(t) = (|r(f) — r(0)|?) Jim MSD(t) = 6Dt

m Addition of betaine slows the dynamics of uranyl and betaine
- strongly correlated betaine and uranyl dynamics
- faster water dynamics as water no longer coordinates with uranyl
- little change in IL dynamics
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Conclusions and Acknowledgements

m Betaine coordinates strongly with uranyl(VI1) and plutonyl(VI)
- displaces both water and Tf,N from the first solvation shell

- a broad distribution of coordination environments at low betaine concentrations
rapidly narrows with increasing amounts of betaine

m Little difference between uranyl(VI) and plutonyl(VI) in these mixtures
m Betaine-bridged dimeric complexes exist in solution
- similar to the observed crystal structure

m Molecular simulation is a valuable tool for understanding the coordination and
dynamics of actinyl cations in solution

- molecular-level insight without difficult and/or dangerous experiments
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