Defect Structures Induced by High-energy Displacement Cascades in γ Uranium

Y. Miao1, B. Beeler2, C. Deo2, M. Baskes3,4, M. Okuniewski5, J. F. Stubbins1

1. University of Illinois at Urbana-Champaign
2. Georgia Institute of Technology
3. Los Alamos National Laboratory
4. University of California -San Diego
5. Idaho National Laboratory
Background

Metallic Uranium Fuel

- Metallic uranium and its alloys (e.g. U-Mo, U-Zr)
 - Candidates for next-generation fast-neutron reactors
- Advantages (Compared to Ceramic Fuels)
 - Higher thermal conductivity → lower operating temperature
 - Better neutron properties
 - Easy fabrication and processing
 - Metallurgical bonding with cladding
- Major Challenge
 - Radiation Tolerance

Background

Properties of γ Uranium

- **Stable Phases of Metallic Uranium (Akella et al., 1997)**
 - At ambient pressure
 - $T<935\text{K}$, α (face-center orthorhombic)
 - $935\text{K}<T<1045\text{K}$, β (body-center tetragonal)
 - $T>1045\text{K}$, γ (body-center cubic)
- **γ-U is the HT stable phase**
 - Stable phases of U-Mo and U-Zr alloy fuels
- **Thermal Conductivity**
 - $\lambda\approx 43.4\text{Wm}^{-1}\text{K}^{-1}(\beta, 1000\text{K}; \text{Takahashi et al., 1988})$
 - compared to $\lambda_{\text{urania}} = 3.2\text{Wm}^{-1}\text{K}^{-1}(1051\text{K}; \text{Ronchi et al., 1999})$
Methodology

Atomic Potentials

- **MEAM Potential** (Beeler et al., 2012)
 - f-electron behavior
 - Expand to U-Zr alloys
 - Stable as T>800K
 - Atomic interactions during cascades
- **EAM Potential** (Belashchenko et al., 2008)
 - Stable at low temperature
 - Analyses of defect structures
- **ZBL Potential**
 - Ballistic Collisions

Parameters and Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_c (eV)</td>
<td>5.27</td>
<td>Cohesive energy of α/γ/fcc</td>
</tr>
<tr>
<td>R_e (Å)</td>
<td>4.36</td>
<td>Lattice constant of γ</td>
</tr>
<tr>
<td>α</td>
<td>5.1</td>
<td>Bulk modulus of γ</td>
</tr>
<tr>
<td>A</td>
<td>1.04</td>
<td>Relative stability of α and γ</td>
</tr>
<tr>
<td>$\beta^{(0)}$</td>
<td>6.0</td>
<td>Relative stability of fcc and γ</td>
</tr>
<tr>
<td>$\beta^{(1)}$</td>
<td>6.8</td>
<td>Shear elastic constants of α</td>
</tr>
<tr>
<td>$\beta^{(2)}$</td>
<td>7.0</td>
<td>Shear elastic constants of α and γ</td>
</tr>
<tr>
<td>$\beta^{(3)}$</td>
<td>7.0</td>
<td>Shear elastic constant of γ</td>
</tr>
<tr>
<td>$t^{(1)}$</td>
<td>2.5</td>
<td>Vacancy formation energy in γ</td>
</tr>
<tr>
<td>$t^{(2)}$</td>
<td>4</td>
<td>Shear elastic constants of α and γ</td>
</tr>
<tr>
<td>$t^{(3)}$</td>
<td>3</td>
<td>Atomic volume of α</td>
</tr>
<tr>
<td>δ</td>
<td>0.1</td>
<td>Thermal expansion of γ</td>
</tr>
<tr>
<td>C_{min}</td>
<td>1</td>
<td>Cohesive energy of α/γ/fcc</td>
</tr>
<tr>
<td>C_{max}</td>
<td>1.9</td>
<td>Cohesive energy of α/γ/fcc</td>
</tr>
</tbody>
</table>
Methodology

Displacement Cascades

- 1keV~50keV PKAs
- Averaged direction <135>
- $T=1045K$ (stable γ phase)
- 50^3, 80^3 and 100^3 unit cells
- 500ps NpT equilibrium
- NVE/NVT cascade evolution
- full relaxation (up to 1ns)
Results

Energy Influence on the Cascades

1keV PKA
50×50×50 supercell
cascade region ~3.5nm
several picoseconds

50keV PKA
100×100×100 supercell
cascade region ~15nm
several hundreded picoseconds
Results

Melt Zone

• Core of the cascade region
 • 50keV PKA
 • $r=10.8\text{nm}$

• Radial Distribution Function
 • Liquid phase as $t<100\text{ps}$
 • Solidification during relaxation

• Low density during melting stage
Results

Typical Defect Configurations

- Octahedral SIAs
 - Minor Form of SIAs
 - Dispersive Distribution

- Separate Vacancies
 - Favored for LE PKA

- Separate Dumbbells
 - \(<100>, \langle110\rangle, \langle111\rangle\)
 - Major Form of SIAs
 - Dispersive Distribution

- One Large Void
 - Major Form of Vacancies
 - Center of Cascade Region

A Typical Defect Configuration
- 50keV PKA, 1045K Displacement Cascade
- 1000ps Relaxation

Crowdions
- Very Rare
Results

PKA Direction Effect

- 4 different PKA directions
 - <100>, <110>, <111>, <135>
- Direction effect is marginal
 - 1keV is high enough to eliminate direction effect
- <135>: averaged direction
 - Used in cascades with higher energy PKAs
Results

Survival Defects vs PKA Energy

- Survival defect population vs PKA energy
 - Non-linear; power function
- Compared to NRT displacement model
 - Survival portion decreases as PKA energy rises
Results

SIA-Type Defect Structures

- 4 types of SIA defects are commonly observed
- Crowdions are rarely formed
- Almost all the SIAs are separate
- Small clusters are found only in 50keV cascades
Results

Vacancy-Type Defect Structures

- Most vacancies exist as voids
- Void size rises with PKA energy
- Facet Shape with \{110\} faces
Conclusions

- 1~50keV PKAs were introduced for HE cascade simulations
- Direction effect is marginal as $E_{PKA} > 1$keV
- SIA-type structures
 - $<100>$, $<110>$, $<111>$ dumbbells and octahedral SIA
 - Separate; no prominent clustering except for 50keV
- Vacancy-type structures
 - Facet shape with $\{110\}$ faces
Future Focuses

- Finish more 50keV cascades for better statistics
- Further investigation of SIA clusters formed in 50keV cascades
- Temperature effects
- Expand to alloy systems (U-Zr, U-Mo)
- Include fission gas (Xe)
Thanks!
Questions?