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Presentation Summary: #=HENEAMS

The US Department of Energy Nuclear Energy Advanced Modeling and
Simulation Program (NEAMS) seeks to rapidly create and deploy
“science-based” verified and validated modeling and simulation

capabilities essential for the design, implementation, and operation of
future nuclear energy systems.

In this talk, | will summarize NEAMS-funded efforts to develop
advanced materials models for fuel performance using multiscale
modeling and simulation.

Outline:
MOOSE-BISON-MARMOT
MOOSE summary

BISON summary
MARMOT summary

Example of multiscale model development
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LWR Fuel Behavior Modeling — U.S. State of the Art

* Fuel performance codes are used today for determination of operational
margins by calculating property evolution.

« However, current US industry standard codes (e.g. FRAPCON and
FALCON) have limitations in three main areas:

Numerical Capabilities Geometry representation Materials models
Serial 1.5 0r 2-D Empirical
Inefficient Solvers Smeared Pellets Models only valid in
Loosely Coupled Restricted to LWR Fuel limited conditions
High Software Limited applicability in
Complexity accident scenarios

FALCON model to investigate clad failure due to defect
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MOOSE-BISON-MARMOT

* The MOOSE-BISON-MARMOT codes address current limitations in
numerical capabilities, geometry representation and materials models.
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Model Development * Models LWR, TRISO and metal
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development of FEM-based applications
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Multiphysics Object-Oriented Simulation Environment

« A finite element based framework GD M@@§E

for solving systems of partial Multiscale, Full Core Reactor Analysis
differential equations

- Employs an object-oriented 1 44
approach to allow for rapid
development of new simulation
tools (Meets NQA-1 requirements)

uuuuuuuuu
vvvvvvvvvvv
vvvvvvvvv

» Code development focuses on
implementing physics rather than
numerical issues

- Comes with the Extended Library
of Kernels (ELK) with various

. ~9
physics modules. RATTLESHAKE I cho Notona aborctory

- Utilizes the Jacobian-free Newton—Krylov (JFNK) method to enable the implicit
solution of large nonlinear systems of coupled physics equations

- Ecosystem of 27 applications (including MARMOT) that have been used to
model a wide range of problems
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‘ BlSON Fuel Performance Code

Solution method: Implicit finite element solution of the coupled thermomechanics and species
diffusion equations using the MOOSE framework

Multiphysics constitutive models: large deformation mechanics (plasticity and creep),
cracking, thermal expansion, densification, radiation effects (swelling, thermal conductivity, etc.)
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“MARMOT

Mesoscale Multiphysics Simulation Tool

- MARMOT predicts coevolution of microstructure and physical properties due to
applied load, temperature, and radiation damage

Technique: Phase field coupled with large deformation solid mechanics and heat \ 2l A\ A ©
conduction solved with implicit finite elements using INL’s MOOSE framework & & M QO@E

All models implemented in
MARMOT are: e

-1D,2Dor3D |
* Massively parallel, from 1 to .
1000’s of processors

 Able to employ mesh and
time step adaptivity

- Easily coupled to additional -~~~
physics from the Extended
Library of Kernels (ELK)

MARMOT is being used at various labs and Universities:
Ar nn o ‘/‘_\ﬁ \;.///l THI “\.!,-\'l“"'” BYU . J
EONNE e - LOSAlamos Pacific Northwest WISCONSIN 1DAHO Cgsges

xxxxxxxxxxxxxxxx

Physical models include:

= GB migration/grain growth

= Species redistribution, phase separation
= Void/Bubble growth and coalescence

= Coupling between phase field and plasticity




Multiscale Materials Modeling Approach

Modeling Approach: Physics-based materials models

are developed using a hierarchical multiscale
approach ranging from the atomistic to
the macroscale
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Effects of Gaseous Fission Products

- We demonstrate our multiscale approach by focusing on fission gas behavior,
due to its large impact on the fuel performance.

« Gaseous fission products and point defects are constantly generated within the
fuel during reactor operation

Fission gas effects fuel performance by:

* Fission product swelling

» Degradation of thermal conductivity

* Fission gas release (increases plenum
pressure and decreases gap thermal
conductivity)

i1

Nucleation
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Fission Gas Evolution Model

- BISON Fission gas evolution model predicts the migration of the fission
gas to GBs and its eventual release into the gap between the fuel and

the cladding. GBcoverage - Model approximates the gas diffusion

EiS_persed ' . . using a 1D spherical domain (grain)
ISSIoNn gas . . . .
.-;.--,;;..-,a . : ) Gas is divided into three types
2 000. . . . . . .
,..‘{.!':,.. 4 . . Dispersed intragranular gas migrating
St Q : P, towards GB.
-& Trapped gas in small intragranular
Intragranular bubbles.
bubbles Gas in GB bubbles that can be
oC, 10 [ ,0C released.
T =P () 0
ANy, 6NZ,  dAg C_ (% R3) _ 9
dt ~  3+4NgAg, dt Prg = Mo \ 37" =Y

Gas in GB bubble begins to release once the GB coverage reaches a set percolation
threshold of 0.5.
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Validation: RISO-3 AN3

- Model has been validated against a series of assessment cases,
including the RISO-3 AN3 test:

— Fuel pin CB8 was base irradiated in the Biblis A PWR for four cycles

— Re-fabricated fuel pin was shortened and instrumented with a fuel
centerline thermocouple and pressure transducer.

— CB8-2R was ramp tested at the Riso DR3 water-cooled HP1 rig
— Assumed short rod length through base irradiation for simulation
— Modeled as 2D-RZ axisymmetric with smeared pellets
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Comparisons During Power Ramp — Riso AN3
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We will now demonstrate how we are improving this model through the use of

multiscale modeling and simulation.
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Fission Gas Diffusivity Investigation
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» Los Alamos
NATIONAL LABORATORY
EST.1943

- Density functional theory (DFT) is being used to investigate the diffusion
constants of fission gas (Xe) in UO.,,.
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, diffusion mechanisms.
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Impact of Grain Size Distribution on Fission Gas

- Typical gas release models assume all grains have the same grain size.

- 3D simulations were used to investigate the impact of the grain size
distribution on the fission gas release.
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Fission gas migration simulation was
conducted in 3D grain structure and the
total gas on the GB was compared to the
spherical grain model.
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Fission Gas Release

- Existing fission gas release model assumes no fission gas release until the GB
fractional coverage reaches 50%. In reality, small amounts of gas are released

at much smaller fractional coverages.

- We are using phase field simulations to develop a more realistic description of

fission gas release.
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Impact on Model Behavior

- We modified the fission gas model to consider the mesoscale-informed
percolation model and repeated the RISO3 AN3 simulation:
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Fission Gas Thermal Conductivity Model ﬁ?c, Alamos

NATIONAL LABORATORY

EST.1943

* Accounts for dispersed gas as weII as mtra and mtergranular bubbles

MD %
calculations g
were .

conducted at
LANL

Dispersed fission gas
MD simulations are used to quantify
impact of dispersed fission gas on
thermal conductivity.
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Impact of Fission Gas Model Behavior

+ RISO3 simulation was repeated using our thermal conductivity model coupled
to the fission gas release model
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Summary
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- MOOSE-BISON-MARMOT provides an advanced fuel performance modeling
capability, using multiscale modeling and simulation to develop

B L e

Multiphysics Object-Oriented Simulation Environment

+ Afinite element based framework
for solving systems of partial
differential equations

Multiscale, Full Core Reactor Analysis
-

+ Employs an object-oriented b 04 g,
approach to allow for rapid
development of new simulation
tools (Meets NQA-1 requirements)

+ Code development focuses on i\
implementing physics rather than
numerical issues

+ Comes with the Extended Library
of Kernels (ELK) with various
physics modules. RATTLESAKE

« Utilizes the Jacobian-free Newton-| K?/Iov (JFNK) method to enable the implicit
solution of large nonlinear systems of coupled physics equations

+ Ecosystem of 27 applications (including MARMOT) that have been used to
model a wide range of problems

. FNL o
‘ BlSON Fuel Performance Code

Solution method: Implicit finite element solution of the coupled thermomechanics and species
diffusion equations using the MOOSE framework

models: large (plasticity and creep),

Massively
parallel, has

i . been run on |
1-12,000 Substantial experimental
- : cpus. validation is underway
3 s - N )

R. L. Williamson, J. D, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Andrs and R. C
Martineas, “Multidimensional \hmwnl\\m\\mlul ation of Nuclear Fuel Behavior,” Journal of Nuclear Materials, 423,
149 (2012

cracking, thermal expansion, densification, radiation effects (swelling, thermal conductivity, etc.)

-
MARMOT R

Mesoscale Multiphysics Simulation Tool

* MARMOT predicts coevolution of microstructure and physical
properties due 10 applied load, temperature, and radiation damage
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Multiscale Modeling Vision

* Develop advanced mechanistic maternals models for

reactor fuel using multi-scale modeling to enable
predictive fuel performance
simulations

s RaaTven of wegrogaton  weea ‘n..im‘

'V

Mesoscale models
(MARMOT)

* Predict and define
microstructure state
varable evolution

* Determine effect of

* Investigale role of idealzed propertias
interfaces
* Determine imertacal propertios

evolution on material
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