Electrochemical Zirconium Recovery Experiments in Molten Salt System

Robert O. Hoover
Michael Shaltry
Supathorn Phongikaroon

Michael F. Simpson
Pyroprocessing Technology
Idaho National Laboratory

Dept. of Chemical and Materials Engineering
University of Idaho, Idaho Falls

August 28, 2012
2012 IPRC
Fontana, WI
Outline

• Introduction
• Motivation and Goal
• Experimental Setup
• Experimental Procedures
• Summary & Future Work
Introduction

- The Experimental Breeder Reactor-II (EBR-II) was a metallic fueled, sodium cooled fast reactor operated at Argonne National Laboratory-West (currently Idaho National Laboratory) from 1963-1994.
- This reactor was fueled with a sodium-bonded, uranium-zirconium alloy fuel.
- An electrochemical process was developed by Argonne National Laboratory to treat this stainless steel clad driver fuel.
- This electrochemical process is currently being used at Idaho National Laboratory to treat the used EBR-II driver fuel.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>80.596</td>
<td>III</td>
</tr>
<tr>
<td>Zr</td>
<td>10.805</td>
<td>IV</td>
</tr>
<tr>
<td>Na</td>
<td>2.160</td>
<td>I</td>
</tr>
<tr>
<td>Nd</td>
<td>0.930</td>
<td>III</td>
</tr>
<tr>
<td>Mo</td>
<td>0.771</td>
<td>III</td>
</tr>
</tbody>
</table>

EBR-II Used Fuel Treatment Process

Element Chopper

Electrorefiner

Cathode Processor

Casting Furnace

Depleted Uranium

Uranium Product

Spent Fuel

Element Segments

Cladding + Noble Metal + Fission Products

Salt w/ TRU + Fission Products + NaCl

Zeolite + Glass

Salt/Zeolite Blending

Zirconium

Metal Waste Furnace

Ceramic Waste Furnace

Ceramic Waste Form

Metal Waste Form

Uranium, Salt

Zirconiun
Mark-IV Electrorefiner (ER)

- **Anode**
 - $U \rightarrow U^{3+} + 3e^-$
 - $Zr \rightarrow Zr^{n+} + ne^-$

- **Cathode**
 - $U^{3+} + 3e^- \rightarrow U$
 - $Zr^{n+} + ne^- \rightarrow Zr$
Motivation and Goal

• Zirconium constitutes a large amount of the EBR-II used driver fuel at greater than 10 wt%.

• Over time, zirconium metal tends to build up within the Mark-IV ER and must periodically be removed.

• In developing a process to electrochemically recover pure zirconium, a knowledge of the Zr redox reactions that occur in the ER is necessary.

• To better understand this process, modeling is essential.

• In the electrochemical modeling process, there are several thermodynamic and electrochemical values that are required.
 - Standard Reduction Potential, \(E^0 \)
 - Diffusion Coefficient, \(D \)
 - Activity Coefficient, \(\gamma \)
• Nernst Equation:

\[E = E^0 + \frac{RT}{nF} \ln(\gamma X_s) \]

- \(E \) Equilibrium potential
- \(E^0 \) Standard reduction potential
- \(R \) Ideal gas constant
- \(T \) Absolute temperature
- \(n \) Number of transferred electrons
- \(F \) Faraday’s constant
- \(\gamma \) Activity coefficient
- \(X_s \) Mole fraction at interface

• What is the standard reduction potential, \(E^0 \)?
 - The standard potential is the equilibrium potential, \(E \), of a given reduction reaction (i.e. \(\text{Zr}^{4+} + 4e^- \rightarrow \text{Zr} \)) at standard conditions.
 - Pure substance at 1 atm pressure
 - \(\gamma = 1 \) and \(X_s = 1 \)
 - This is related to the Gibbs free energy change of the same half-cell reaction.
 \[\Delta G^0 = -nFE^0 \]
 \(\Delta G_i^0 \) Gibbs energy change of reaction i
Mass Transfer:

\[N = kA(C_s - C_{\text{salt}}) \]

\[Sh = \frac{kd_e}{D} = 0.0791 \left(\frac{\omega d_e^2}{v} \right)^{0.7} (D)^{0.356} \]

What is the diffusion coefficient?

- Proportionality constant between molar flux and concentration gradient.
- Fick’s 1st Law:
 \[N = -D \nabla C \]
- Follows the Arrhenius temperature dependence.

\[D = D_0 \exp\left(-\frac{\Delta H_D}{RT} \right) \]

\begin{align*}
\text{N} & \quad \text{Molar mass transfer} \\
\text{k} & \quad \text{Mass transfer coefficient} \\
\text{C}_{\text{salt}} & \quad \text{Bulk salt concentration} \\
\text{Sh} & \quad \text{Sherwood number} \\
\text{d}_e & \quad \text{Equivalent electrode diameter} \\
\text{A} & \quad \text{Total electrode surface area} \\
\text{C}_s & \quad \text{Surface concentration} \\
\text{\omega} & \quad \text{Electrode rotation rate} \\
\text{v} & \quad \text{Viscosity of salt} \\
\text{D}_0 & \quad \text{Pre-exponential factor} \\
\Delta H_D & \quad \text{Activation energy for diffusion}
\end{align*}
Available Literature Values

<table>
<thead>
<tr>
<th>Standard Reduction Potential, E^0 (V vs. Ag/AgCl)</th>
<th>Diffusion Coefficient, D (cm2/s)</th>
<th>Activity Coefficient, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr(IV)/Zr</td>
<td>Zr(IV)/Zr(II)</td>
<td>Zr(II)/Zr</td>
</tr>
<tr>
<td>[2]</td>
<td>-1.22*</td>
<td>---</td>
</tr>
<tr>
<td>[3]</td>
<td>-1.064*</td>
<td>-1.121*</td>
</tr>
<tr>
<td>[4]</td>
<td>-0.838</td>
<td>---</td>
</tr>
<tr>
<td>[5]</td>
<td>-1.064*</td>
<td>-1.121*</td>
</tr>
<tr>
<td>[7]</td>
<td>-1.1</td>
<td>---</td>
</tr>
<tr>
<td>[8]</td>
<td>-1.22</td>
<td>---</td>
</tr>
<tr>
<td>[9]</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[10]</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

* Values reported are at 450 °C.

References

(a) Al$_2$O$_3$ sheathed thermocouple
 - Monitored with Fluke 52II
(b) Tungsten working electrode
(c) Ag/AgCl reference electrode
 (5 mol%)
(d) Glassy carbon counter electrode
 lead
(e) Glassy carbon crucible/counter electrode
(f) MgO secondary crucible
(g) Eutectic LiCl/KCl salt containing ZrCl$_4$
(h) Furnace
 - Kerrlab with graphite crucible
Procedures

• Loading LiCl/KCl eutectic and ZrCl\textsubscript{4}
 - (1.0, 2.5, and 5.0) wt% ZrCl\textsubscript{4}
 - LiCl/KCl eutectic, 44/56 wt% (Sigma-Aldrich, 99.99%)
 - ZrCl\textsubscript{4} (Alfa Aesar, Reactor Grade, 99.5+\%)
• Heating salt at 4 °C/min to 500 °C (± 2) in the salt.
• Lowering electrodes into the molten salt.
 - Tungsten Working Electrode
 - d = 2.0 mm (Alfa Aesar, 99.95%)
 - Glassy Carbon Counter Electrode Lead
 - d = 3.0 mm (HTW-Germany)
 - Ag/AgCl Reference Electrode
 - Ag wire, d = 1.0 mm diameter (Acros Organics, 99.9%)
 - 5 mol% AgCl in LiCl/KCl (Alfa Aesar, ultradry, 99.997%)
Electrochemistry

- Cyclic Voltammetry
 - Scan range: 0 V to -2.4 V
 - Scan rate: 300 mV/s to 2.0 V/s
- Chronopotentiometry
 - Driving current: 70 mA to 300 mA

Samples taken for ICP-MS analysis.

- Mixed:
 - 1.0 wt%
 - 2.5 wt%
 - 5.0 wt%

Analysis Results:

- (0.954 ± 0.117) wt%
- (2.49 ± 0.304) wt%
- (4.84 ± 0.585) wt%
Chloride Salt Ingots

Pure LiCl/KCl Eutectic
1.0 wt% ZrCl$_4$

2.5 wt% ZrCl$_4$

5.0 wt% ZrCl$_4$
Cyclic Voltammetry (CV)

- A common electrochemical technique that can be used to determine the reactions that can occur in the electrochemical cell.
- Potential is scanned through the range of interest and current is measured.
 - Potential Range Scanned: 0 V to -2.4 V
 - Li$^+$ Reduction: -2.561 V [12]
 - Cl$^-$ Oxidation: +1.065 V [12]
- From the resulting current, reaction information can be determined.
 - Randles-Sevcik equation
 \[
 \frac{I_p}{\sqrt{v}} = 0.446nFAC\sqrt{\frac{n\alpha FD}{RT}}
 \]
 - Delahay equation
 \[
 \frac{I_p}{\sqrt{v}} = 0.4958nFAC\sqrt{\frac{n\alpha FD}{RT}}
 \]
 - Equilibrium potential
 \[
 E = \frac{E_{p,a} + E_{p,c}}{2}
 \]
 - Apparent standard potential
 \[
 E = E^o' + \frac{RT}{nF} \ln(X)
 \]

Chronopotentiometry (CP)

- An electrochemical technique that can be used to determine the diffusion coefficient of ions within the electrolyte.
- A large driving current is applied and the resulting potential is measured.
 - To maintain the applied current, the potential drops to a value at which ions of a given species are reduced.
 - When the ion is fully reduced at the electrode surface the potential drops to a potential at which the next ion will reduce.
 - This creates a plateau in the measured potential.
 - The duration of this plateau, or transition time, τ, is related to diffusion coefficient, D, through the Sand equation.

$$i\sqrt{\tau} = \frac{nFC\sqrt{\pi D}}{2}$$

- From the resulting potential response, transition time and diffusion can be determined.
Cyclic Voltammogram (1.0 wt% ZrCl$_4$)

Scan Rate
- LiCl/KCl 200 mV/s
- 300 mV/s
- 350 mV/s
- 400 mV/s
- 450 mV/s
- 500 mV/s
- 550 mV/s
- 600 mV/s
- 650 mV/s
- 700 mV/s
- 800 mV/s
- 900 mV/s
- 1.0 V/s

Electrode Surface Area: 0.53 cm2

- $\text{Zr}^+ \rightarrow \text{Zr}^{4+} + 3e^-$
- $\text{Zr} \rightarrow \text{Zr}^{2+} + 2e^-$
- $\text{Zr} \rightarrow \text{Zr}^{4+} + 4e^-$
- $\text{Zr}^{2+} \rightarrow \text{Zr}^{4+} + 2e^-$
- $\text{Zr}^{4+} + 2e^- \rightarrow \text{Zr}^{2+}$
- $\text{Zr}^{4+} + 3e^- \rightarrow \text{Zr}^+$
1.0 wt\% ZrCl\textsubscript{4}

A $\text{Zr}^{4+} + 2e^- \rightarrow \text{Zr}^{2+}$
B $\text{Zr}^{2+} + 2e^- \rightarrow \text{Zr}$
$\text{Zr}^{4+} + 3e^- \rightarrow \text{Zr}^+$
C $\text{Zr}^+ + e^- \rightarrow \text{Zr}$
$\text{Zr}^{4+} + 4e^- \rightarrow \text{Zr}$
D $\text{Zr}^+ \rightarrow \text{Zr}^{4+} + 3e^-$
$\text{Zr} \rightarrow \text{Zr}^{2+} + 2e^-$

\[i_p = 0.4958nFC\sqrt{\frac{n\alpha FD\nu}{RT}} \]

<table>
<thead>
<tr>
<th>Peak</th>
<th>Diffusion Coefficient, D (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 1$</td>
</tr>
<tr>
<td>A</td>
<td>9.26×10^{-5}</td>
</tr>
<tr>
<td>B</td>
<td>1.50×10^{-4}</td>
</tr>
<tr>
<td>C</td>
<td>1.52×10^{-5}</td>
</tr>
<tr>
<td>D</td>
<td>1.19×10^{-3}</td>
</tr>
</tbody>
</table>
Cyclic Voltammogram (2.5 wt% ZrCl$_4$)

Scan Rate
- 400 mV/s
- 500 mV/s
- 800 mV/s
- 900 mV/s
- 1.0 V/s
- 1.1 V/s
- 1.5 V/s
- 2.0 V/s

Electrode Surface Area: 0.72 cm2
Cyclic Voltammogram (5.0 wt% ZrCl$_4$)

Scan Rate
- 250 mV/s
- 350 mV/s
- 450 mV/s
- 550 mV/s
- 650 mV/s

Electrode Surface Area: 0.69 cm2
Nernst Plot for Peaks B and D

- **Equation for Nernst Plot**:
 \[E = E^0 + \frac{RT}{nF} \ln(X) \]
 \[E = -0.849 + 0.0389 \ln(X) \]
 \[R^2 = 0.9829 \]

- **Apparent reduction potential**:
 \[E^0' = -0.849 \text{ V (vs Ag/AgCl)} \]

- **Average number of electrons transferred in the reaction(s)**:
 \[n = 1.71 \]
Chronopotentiometry (1.0 wt% ZrCl$_4$)

Applied Driving

- Current:
 - 70 mA
 - 80 mA
 - 90 mA
 - 100 mA
 - 150 mA

Electrode Surface Area: 0.53 cm2
Summary

• An experimental setup and process has been designed to test properties relevant to the electrochemical recovery of zirconium in molten salt.

• Cyclic voltammetry has been performed on (1.0, 2.5, and 5.0) wt% ZrCl$_4$ in the molten LiCl/KCl eutectic salt at 500 °C.
 - Cyclic voltammograms show complex behavior of zirconium in the molten salt with presence of ZrCl$_4$, ZrCl$_2$, and ZrCl.
 - Range of diffusion coefficients in the LiCl/KCl eutectic was determined.
 • $D = 2.37 \times 10^{-7} - 1.48 \times 10^{-4}$ cm2/s
 - Apparent standard reduction potential was determined for one pair of peaks.
 • $E^\circ' = -0.849$ V vs. Ag/AgCl

• Chronopotentiometry was performed and shows complex behavior.
Summary

<table>
<thead>
<tr>
<th>Standard Reduction Potential, E^0 (V vs. Ag/AgCl)</th>
<th>Diffusion Coefficient, D (m2/s)</th>
<th>Activity Coefficient, γ</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr(IV)/Zr</td>
<td>Zr(IV)/Zr(II)</td>
<td>Zr(II)/Zr</td>
<td>Zr(IV)</td>
</tr>
<tr>
<td>[2] -1.22*</td>
<td>---</td>
<td>-1.12</td>
<td>---</td>
</tr>
<tr>
<td>[3] -1.064*</td>
<td>-1.121*</td>
<td>-1.01*</td>
<td>---</td>
</tr>
<tr>
<td>[4] -0.838</td>
<td>---</td>
<td>-0.722</td>
<td>---</td>
</tr>
<tr>
<td>[5] -1.064*</td>
<td>-1.121*</td>
<td>-1.007*</td>
<td>---</td>
</tr>
<tr>
<td>[7] -1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[8] -1.22</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[9] ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[10] ---</td>
<td>---</td>
<td>---</td>
<td>1.13×10^{-5}</td>
</tr>
</tbody>
</table>

* Values reported are at 450 °C.

Future Work

• Further analysis of chronopotentiometry data.
• Further work with ZrCl$_4$ at additional concentrations.
• Zirconium electrodeposition experiments with transparent setup to analyze zirconium deposit morphology.
• Experiments to optimize/maximize zirconium recovery.
 • Cathode material, operating temperature, applied potential.
• Electrochemistry experiments/analysis with UCl$_3$ in LiCl/KCl eutectic.
• Final phase of this work will explore the electrochemical recovery of zirconium in the presence of uranium.
Acknowledgements

• This work was performed as part of I-NERI Project 2010-001-K in conjunction with Seoul National University and Korea Atomic Energy Research Institute.

• Thanks to all those who have helped with this project including Debbie Lacroix, Sean Martin, Ammon Williams, Josh Versey, Mike Pack, Cindy Hanson, and Dalsung Yoon.
Thanks!
Activity Coefficient

• Nernst Equation

\[E = E^0 + \frac{RT}{nF} \ln(\gamma X_s) \]

• What is the activity coefficient, \(\gamma \)?
 - A factor included in order to take account of deviations from solution ideality in the liquid phase.
 - It is related to the excess Gibbs energy, \(G^E \), the difference between the actual and ideal Gibbs energy of a solution.

\[\bar{G}^E = RT \ln(\gamma) \quad \text{G}^E \text{ Excess Gibbs energy} \]

- It is defined as a ratio of the fugacity of the species in solution and its mass fraction in solution times its pure species fugacity.

\[\gamma \equiv \frac{\hat{f}}{xf} \quad \hat{f} \text{ Fugacity in solution} \]
\[x \text{ Mass fraction in solution} \]
\[f \text{ Fugacity of pure species} \]