Experimental Studies of Oxygen Sparging in Molten Salt Through a Transparent Furnace

Ryan W. Bezzant and Supathorn Phongikaroon
Chemical Engineering Department and Nuclear Engineering Program
University of Idaho, Idaho Falls
Center for Advanced Energy Studies

Michael F. Simpson
Pyroprocessing Technology Department,
Idaho National Laboratory
Alternative Proposed Processes

- Chopped Fuel
 - Metal Waste
 - High Purity Electrolyte
 - Electrorefiner and Product Refinement
 - Contaminated Electrolyte
 - Rare Earth Oxidative Precipitations
 - Ion Exchange
 - Zone Freezing
 - Ceramic Waste
 - Uranium Metal
 - High Purity Electrolyte
Motivation and Approach

Korea Atomic Energy Research Institute (KAERI) observed gravity separation of oxides in molten salt.¹

Motivation
There is a lack of fundamental study to provide insight into systematic parameters in molten salt

Approach
Use transparent cell, high speed camera and O₂ sensor to obtain concentration data, bubble distribution and reaction rates.

\[
\begin{align*}
(1) \quad \text{RECl}_3 + \frac{1}{2} \text{O}_2 & \rightarrow \text{REOCl} + \text{Cl}_2 \\
(2) \quad \text{RECl}_3 + \text{O}_2 & \rightarrow \text{REO}_2 + \frac{3}{2} \text{Cl}_2 \\
(3) \quad \text{RECl}_3 + \text{O}_2 & \rightarrow \frac{1}{2} \text{RE}_2\text{O}_3 + \frac{3}{2} \text{Cl}_2
\end{align*}
\]

Experimental Setup and Plans

- Melt 150 g of LiCl-KCl eutectic salt (58.5 mol% LiCl, 41.5 mol% KCl) at 500°C under an argon environment.
- \(\text{O}_2 \) Sparging Rates: \((8.33 \times 10^{-7}, 1.67 \times 10^{-6}, 2.50 \times 10^{-6}, 3.33 \times 10^{-6})\) m\(^3\)/s. Note: (0.05, 0.10, 0.15, 0.20) L/min.
- Record bubble images (250 fps) and \(\text{O}_2 \) concentration data (± 3%).
- Sparge until salt is \(\text{O}_2 \) saturated.
Obstacles

Corrosion Issues

304 Stainless Steel

Inconel 600

Solution

Non-porous Alumina
(Aluminum oxide)
3/16” OD 0.031” holes.
Bubble Dispersion Video

Temperature: 500⁰ C
Sparging Rate: 8.33 \times 10^{-7} m^3/s
Camera Speed: 250 fps
Sample Size: 150 g
Transparent Study Analysis

\[V_{\text{Ellipsoid}} = \frac{\pi}{6} b_{\text{Large}} b_{\text{Small}}^2 \]

\[b_{\text{Equivalent}} = \left(\frac{6}{\pi} V_{\text{Ellipsoid}} \right)^{1/3} \]

Bubble velocity is also observed.

<table>
<thead>
<tr>
<th>Sparging rate, (Q) (m(^3)/s)</th>
<th>Number mean diameter, (b_{10}) (m)</th>
<th>Number standard deviation, (\sigma_{10}) (m)</th>
<th>Volume mean diameter, (b_{30}) (m)</th>
<th>Sauter mean diameter, (b_{32}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8.33 \times 10^{-7})</td>
<td>0.00263</td>
<td>0.00073</td>
<td>0.00301</td>
<td>0.00304</td>
</tr>
<tr>
<td>(1.67 \times 10^{-6})</td>
<td>0.00368</td>
<td>0.00112</td>
<td>0.00421</td>
<td>0.00438</td>
</tr>
<tr>
<td>(2.50 \times 10^{-6})</td>
<td>0.00383</td>
<td>0.00118</td>
<td>0.00466</td>
<td>0.00455</td>
</tr>
<tr>
<td>(3.33 \times 10^{-6})</td>
<td>0.00407</td>
<td>0.00103</td>
<td>0.00451</td>
<td>0.00459</td>
</tr>
</tbody>
</table>
Bubble Shape Validation

Conditions of Curve
- Log $M = -10$
- Eotvos Number 0.2-40
- Reynold’s Number 300-4000

Experimental Results
- Log $M = -10.1304$
- Eotvos Number 0.54-8.94
- Reynold’s Number 344-2406

$Eo = g \Delta \rho d_{\text{equiv}}^2 / \sigma$

$M = g \mu^4 \Delta \rho / \rho^2 \sigma^3$

$Re = \rho d_{\text{equiv}} V_b / \mu$

<table>
<thead>
<tr>
<th>Salt viscosity, μ_c (N s/m2)</th>
<th>Salt density, ρ_c (kg/m3)</th>
<th>Surface tension, σ_c (N/m)</th>
<th>Oxygen density, ρ_b (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00223</td>
<td>1,621</td>
<td>0.126</td>
<td>0.457</td>
</tr>
</tbody>
</table>

[7]
The normally distributed probability density function:

\[f(\beta) = \frac{1}{\sigma_\beta \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\beta - \bar{\beta}}{\sigma_\beta} \right)^2 \right] \]

\[\beta = \frac{b}{b_{10}} = 1.004 \pm 0.027 \quad \text{and} \quad \sigma_\beta = 0.255 \pm 0.018 \]
Fanning Friction Ratio

<table>
<thead>
<tr>
<th>Sparging Rate, Q (m3/s)</th>
<th>Mean Bubble Rising Velocity, V_b (m/s)</th>
<th>Standard Deviation (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.33×10^{-7}</td>
<td>0.262</td>
<td>0.0510</td>
</tr>
<tr>
<td>1.67×10^{-6}</td>
<td>0.301</td>
<td>0.0998</td>
</tr>
<tr>
<td>2.50×10^{-6}</td>
<td>0.299</td>
<td>0.0554</td>
</tr>
<tr>
<td>3.33×10^{-6}</td>
<td>0.338</td>
<td>0.0770</td>
</tr>
</tbody>
</table>

\[
\frac{f}{Re_b} = \frac{4}{3} \frac{g \mu_c}{\rho_c} \left(\frac{\rho_c - \rho_b}{\rho_c} \right)
\]

Using this correlation, the rising velocity of a bubble can be estimated based on the equivalent diameter of a bubble.
Oxygen Gas Holdup, ϕ

Experimental Approach:

$$\phi = \frac{V_S}{V_b} \quad \text{and} \quad V_S = \frac{4Q}{\pi D^2}$$

Akita and Yoshida’s Correlation (1973):

$$\frac{\phi}{(1-\phi)^4} = 0.32 N_{Bo}^{0.121} N_{Ga}^{0.086} \left(\frac{\rho_b}{\rho_c}\right)^{0.068} N_{Fr}$$

<table>
<thead>
<tr>
<th>Sparging rate, Q (m3/s)</th>
<th>Experimental (Dimensionless)</th>
<th>Akita and Yoshida (Dimensionless)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.33×10^{-7}</td>
<td>0.00169</td>
<td>0.00174</td>
<td>3.09</td>
</tr>
<tr>
<td>1.67×10^{-6}</td>
<td>0.00294</td>
<td>0.00345</td>
<td>17.4</td>
</tr>
<tr>
<td>2.50×10^{-6}</td>
<td>0.00427</td>
<td>0.00514</td>
<td>19.2</td>
</tr>
<tr>
<td>3.33×10^{-6}</td>
<td>0.00523</td>
<td>0.00681</td>
<td>30.3</td>
</tr>
</tbody>
</table>

Bond Number

$$N_{Bo} = \frac{gD^2 \rho_c}{\sigma_c}$$

Galileo Number

$$N_{Ga} = \frac{gD^3}{\nu_c^2}$$

Froude Number

$$N_{Fr} = \frac{V_S}{(gD)^{1/2}}$$
O$_2$ Mass Transfer Coefficient

- Calculate the interfacial area of an average equivalent bubble:
 \[a = \frac{6\phi}{b_{32}} \]

- Oxygenation model:
 \[\frac{dC}{dt} = \frac{ka}{(1 - \phi)} (C^* - C) \]

- After integration with the I.C. $t = 0$, $C = C_0$:
 \[\ln(C^* - C) = \ln(C^* - C_0) - \frac{ka}{(1 - \phi)} t \]

- k = Mass Transfer Coefficient
- C^* = Concentration at saturation
- C_0 = Initial concentration
- C = Concentration at specific time
- ϕ = Gas hold up
- a = Interfacial area
- V_s = Superficial gas velocity
- V_b = Bubble rise velocity
- Q = Gas flow rate
- D = Crucible diameter
- b_{32} = Sauter mean diameter
Plot and Resulting k values

<table>
<thead>
<tr>
<th>Sparging rate, Q (m³/s)</th>
<th>Slope, $ka(1-\Phi)$ (s⁻¹)</th>
<th>Interfacial area, a (m⁻¹)</th>
<th>Mass transfer coefficient, k (m/s)</th>
<th>95% Confidence Interval (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.33×10^{-7}</td>
<td>0.0032</td>
<td>3.33</td>
<td>0.00096</td>
<td>18.9</td>
</tr>
<tr>
<td>1.67×10^{-6}</td>
<td>0.0029</td>
<td>4.03</td>
<td>0.00072</td>
<td>18.9</td>
</tr>
<tr>
<td>2.50×10^{-6}</td>
<td>0.0035</td>
<td>5.63</td>
<td>0.00068</td>
<td>26.2</td>
</tr>
<tr>
<td>3.33×10^{-6}</td>
<td>0.0027</td>
<td>6.82</td>
<td>0.00039</td>
<td>14.7</td>
</tr>
</tbody>
</table>
Diffusion Coefficient

- Use the experimental k value to predict D_L.
- Use 3 correlations based on two different frames of preferences: (1) physics of the bubble and (2) systematic physical properties.

Penetration theory:

$$D_L = \frac{\pi k^2 b_{32}}{4 V_b}$$

Calderbank and Moo-Young (1960):

$$D_L \propto k^2 \mu_c^{1/3} \rho_c^{1/3} / (g\Delta\rho)^{2/3}$$

Akita and Yoshida (1973):

$$D_L \propto k^2 D^{0.26} \sigma_c^{0.24} \phi^{0.06} / (g^{0.66} \mu_c^{0.16} \rho_c^{0.08})$$

<table>
<thead>
<tr>
<th>Sparging Rate (m3/s)</th>
<th>Penetration Theory</th>
<th>Calderbank and Moo-Young</th>
<th>Akita and Yoshida</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.33×10^{-7}</td>
<td>8.40×10^{-9}</td>
<td>1.28×10^{-8}</td>
<td>2.43×10^{-8}</td>
</tr>
<tr>
<td>1.67×10^{-6}</td>
<td>5.89×10^{-9}</td>
<td>7.21×10^{-9}</td>
<td>1.42×10^{-8}</td>
</tr>
<tr>
<td>2.50×10^{-6}</td>
<td>5.82×10^{-9}</td>
<td>6.43×10^{-9}</td>
<td>1.30×10^{-8}</td>
</tr>
<tr>
<td>3.33×10^{-6}</td>
<td>1.65×10^{-9}</td>
<td>2.12×10^{-9}</td>
<td>4.44×10^{-9}</td>
</tr>
</tbody>
</table>
Conclusion

- Both bubble size and rise velocity increase with an increase in oxygen sparging rate.
- b_{10} ranged from 0.00263 m to 0.00407 m.
- These bubbles form an ellipsoidal shape and the equivalent bubble diameters of the populations observed were normally distributed.
- The bubble rise velocities can be predicted using a Fanning friction factor-Reynolds number correlation.
- k can be calculated experimentally using the oxygenation model and ranged from 3.94×10^{-4} m/s to 9.61×10^{-4} m/s.
- The results show a downwards trend with an increase in sparging rate or an increase in bubble size which is supported by observations reported by previous researchers (Calderbank et al., 1960; Kulkarni, 2007).
- Diffusion coefficients were calculated using three correlations and compared.
- Penetration theory is the most robust of these models yielding diffusivity values between 1.65×10^{-9} m2/s and 8.40×10^{-9} m2/s, which is supported by literature (Cussler, 1984; Sada et al., 1984).
Acknowledgement

• Center for Advanced Energy Studies for the use of the Radiochemistry Laboratory.
• Michael Shaltry, Robert Hoover and Ammon Williams for experimental and technical supports.
Questions?