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Agenda

• Mark-IV Electrorefiner

• Motivation

• Overview of LIBS (Laser-induced Breakdown
Spectroscopy)
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Mark-IV Electrorefiner

• Processes used
nuclear fuel (UNF)

• Uranium from UNF is
electrochemically
transferred through the
salt forming deposits on
the cathode

• Build up of fission
products, transuranics,
etc. inhibits efficiency
and creates liabilities
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Challenge for in-situ Electrorefiner Analysis
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• No current method for real time analysis of salt

• 500 C operating temperature inside electrorefiner

• Radioactive environment

Motivation

• Optimize operating conditions

• Material accountability and safeguards



Possible Solution
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• Laser-Induced Breakdown Spectroscopy

– No sample preparation

– Real time

– Performed with fiber optics



Objectives

• Build a system to accommodate the experiment

– Incorporating fiber optic collection system

• Determine a method to create a calibration curve

• Acquire calibration curves for CeCl3 in molten LiCl-KCl

• Identify changes in spectra as temperature varies from
300–500°C with 50 degree increments
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Experimental Set-up
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Experimental Setup • Continuum Surelite I
Nd:YAG Laser

• SE 200 Echelle
Spectrograph

• Andor LUCA-R EMCCD
Camera
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Calibration Scheme

• Internal Standard

– Calibration based on peak ratios rather than
absolute peak intensity or area

– Avoid determining baseline

– Avoid spectral changes due to laser energy
fluctuations
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Wavelength Selection

– Ce 452.74 nm

• Pu 453.63 nm
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Effect of Laser Energy
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Sample Preparation

• 65/35 mol% LiCl/KCl (~400 °C melting point)

• Five Concentration Points for Ce (0.1, 0.3, 0.5, 0.8,1.0 wt%)

• Internal standard of Mn (~0.44 wt%)
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5 g Sample



Sample Preparation

• Samples prepared in a glovebox

• Transferred to atmospheric
chamber exposing to air

• Sample heated to ~500 C

• Vacuum pulled to ~10-3 Torr
backfilled with argon repeated
once

• Spectra collected at 50 degree
increments between 300-500 C
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Ce Calibration Curves at Various Temperatures
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Standard Deviation at Various Temperatures
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Ce Signal Intensity as a Function of
Temperature at Varying % wt Ce



%Deviation from 500 C line at Various Concentrations
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Summary
• Calibration curves indicate Ce/Mn ratios are affected by

temperature

• Signal intensity is it’s at 350 °C but has the lowest Ce/Mn intensity
ratio

• Ce/Mn ratios are not significantly affected by laser energy

• Higher temperature regimes (i.e., molten phase) have the least
Ce/Mn ratio variance between samples

• As Ce wt% increases, the variations decrease between liquid and
solid samples
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Future Work

• Incorporate dual pulse LIBS system

• Improve light collection system

• Perform work on other species



Acknowledgements

• Idaho National Laboratory

– Timothy R. McJunkin

• Work supported by the U.S. Department of Energy through the INL
Laboratory Directed Research & Development (LDRD) Program under
DOE Idaho Operations Office Contract DE-AC07-05ID14517.

19



Questions?
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Ce wt % LiCl wt % KCl wt % CeCl3 wt % MnCl2 wt %

0.1 50.81 48.03 0.16 1.00

0.3 50.47 47.99 0.53 1.00

0.5 50.14 47.99 0.87 1.00

0.8 49.59 48.02 1.39 1.00

1.0 49.24 48.00 1.76 1.01



• Cabalini et al., Fresenius J Anal Chem 1999, 365, 404-408.
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Double Pulse

• Babushok, V. I., F. C. DeLucia, et al. (2006). "Double pulse laser
ablation and plasma: Laser induced breakdown spectroscopy signal
enhancement." Spectrochimica Acta Part B-Atomic Spectroscopy
61(9): 999-1014.
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CF-LIBS Method

• I = Intensity of light at wavelength l

• F = efficiency of light collection system

• Cs = Concentration of species s

• A = Transition probability

• gk = degeneracy

• Ek = Energy at level k

• kB = Boltzmann’s constant

• Us = Partition function
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CF-LIBS Assumptions

• Stoichiometric Ablation

– The constituents of the plasma are equivalent
to that which was ablated

• Local Thermal Equilibrium (LTE)

– Isothermal for the temporal and spatial window

• Optically thin plasma

– No self absorption
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Local Thermal Equilibrium

• McWhirter Criterion

– Minimum electron density needed to allow for
LTE

– Assumes the plasma plume is stationary and
homogenous
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• Electron density is calculated by observing line
broadening due to the Stark effect



Statistical Outliers

• Outlier definition: Any observation farther than 1.5fs from the closest
fourth is an outlier.

• Order observations from smallest to largest

– Upper forth = median of the largest half

– Lower forth = median of the smallest half

– fs = “A measure of spread that is resilient to outliers”

• fs = upper forth – lower forth

28


