ZONE FREEZING STUDY FOR PYROCHEMICAL PROCESS WASTE MINIMIZATION

Ammon N. Williams and Supathorn Phongikaroon
University of Idaho

Michael F. Simpson
Idaho National Laboratory

2012 International Pyroprocessing Research Conference
Outline

• Background, Motivation, and Goals
• Experimental Method
• Experimental Results
• Model Development
• Modeling Results
• Conclusions and Recommendations
• Acknowledgments
An ion exchange process has been proposed as a method of removing fission products from the electrolyte salt.†

The Korea Atomic Energy Research Institute (KAERI) proposed a zone freezing method as a potential alternative to the ion exchange process.

Ion exchange and zone freezing were not directly compared in this work; however, results may help researchers determine the optimal process configuration.
What is Zone Freezing?

- Salt is completely liquid in the high temperature zone at typical electrorefiner exit compositions.
What is Zone Freezing?

- At some intermediate time, pure LiCl-KCl salt has solidified at the top surface, leaving a CsCl enriched liquid phase.
What is Zone Freezing?

- The ternary eutectic point has been reached and the bottom portion of the salt with the bulk of the CsCl finally solidifies.
Motivation & Goals

• Results from Cho et al.† have proven that there are many parameters to be explored.
• To better understand the zone freezing process the following conditions were explored:
 ▪ Temperature,
 ▪ Advancement and cooling rate,
 ▪ Composition and amount of the salt, and
 ▪ Crucible lid and no-lid configurations.
• In addition, a modeling tool was developed to help describe zone freezing results.
• Success will help in optimizing zone freezing.

Experimental Methods

Crystal Growing Furnace

Cross-Sectional View

- Inert Gas System
- Alumina Retort Tube
- Low Temperature Zone (LTZ)
- Adiabatic Zone
- High Temperature Zone (HTZ)
Variables & Conditions

- Initial compositions of salt.
- Amount of salt mixture.
- Temperatures of high and low furnace zones.
- Advancement rates.
- Lid Configurations.

<table>
<thead>
<tr>
<th>Advancement rate (mm/hr)</th>
<th>1 wt% CsCl</th>
<th>3 wt% CsCl</th>
<th>5 wt% CsCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Experimental Methods

Material Configuration & Sampling

Thermocouples

Drilled Sampling Holes

Salt

Alumina Crucible

Filler Material

Collected Sample
Experimental Results

Grown Salt Crystals

1.8 mm/hr (Lid)
Top View

3.2 mm/hr (Lid)
Bottom View

5.0 mm/hr (Lid)
Growth Time: The amount of time passed from the onset to the termination of solidification. Used to determine the effective growth rate in the salt.

ΔT: The temperature difference between the top and bottom of the liquid phase. Used to calculate the Gr number and salt physical properties (ρ, ν, and D).
Experimental Results

Concentration Profiles & Analysis

![Graph showing concentration profiles](image)

- Local concentration ω_{CsCl} vs. h/h_0
- 1.8 mm/hr
- Fraction buildup

$$Buildup\ Fraction_{n} = \frac{\sum_{i=1}^{n} m_{CsCl_i}}{\sum_{i=1}^{n} m_{Salt_i}}$$
Experimental Results

CsCl Buildup Profiles

Buildup Fraction

m/m_0

1.8 mm/hr (No Lid)
3.2 mm/hr (No Lid)
5.0 mm/hr (No Lid)
1.8 mm/hr (Lid)
3.2 mm/hr (Lid)
5.0 mm/hr (Lid)
Experimental Results

Percentage of Recycled Salt (2 wt % CsCl Purity, 50 g batches)

- The 400 g experiments showed increased recycle percentages and high throughputs.
- Assumed that all experimental conditions will have increased performance for larger mix sizes.
Experimental Results

Waste Composition (2 wt% CsCl Recycled Purity, 50 g batches)

- Recommend multiple stages to further reduce waste.
Experimental Results

1 wt%, 3 wt%, and 5 wt% CsCl Experiments

Cumulative ω_{CsCl} vs. m/m_0 for:
- 1 wt% CsCl (represented by black filled circles)
- 3 wt% CsCl (represented by black crosses)
- 5 wt% CsCl (represented by black plus signs)
Multiple Stages?

- ↑ initial compositions → diminishing returns.

- **Recommended Conditions:**
 - 5.0 mm/hr rate with a lid configuration with 4 stages.
 - Total recycle percentage of 86% and recycle throughput of 2.75 g/hr (waste = 0.44 g/hr at 9 wt% CsCl).

Experimental Results

![Graph showing buildup fraction against m/m₀, with data points for predicted 5 wt% CsCl (Lid) and 3 wt% CsCl (Lid).]
Model Development

Scheil Model

- Model Assumptions:
 - Segregation coefficient (k_{eff}) is constant.
 - No concentration gradient in the liquid (well-mixed).
 - Equilibrium prevails at the interface.

Governing Eqn.:
\[
(C_L - C_S)df_s = (1 - f_s)dC_L \quad \text{Eqn. 1}
\]

Solution:
\[
C_S = k_{\text{eff}} C_0 (1 - f_s)^{k_{\text{eff}} - 1} \quad \text{Eqn. 2}
\]

where,
- C_S = Solid Conc., C_L = Liquid Conc.,
- C_0 = Initial Conc., $k_{\text{eff}} = C_S/C_B$, and
- f_s = Fraction Solidified

Model Development

Tiller Model

- Model Assumptions:
 - Segregation coefficient \((k) \) is constant.
 - A concentration boundary layer (\(\delta \)) exists with no mixing.
 - Equilibrium prevails at the interface.
 - Neglects end effects.

Governing Eqn.:
\[
D \frac{d^2C}{dx^2} + R \frac{dC}{dx} = 0 \quad \text{Eqn. 3}
\]

Solution:
\[
C_s = C_0 \left(1 - k \left(1 - \exp \left(-k \frac{R}{D} h \right) \right) + k \right) \quad \text{Eqn. 4}
\]
where,
\(C \) = Concentration, \(k = C_s/C_L \),
\(R \) = growth rate, and \(D \) = Diffusion Coefficient.

Modeling Results

Comparison Between Models

- 3.2 mm/hr, No-Lid Configuration
 - Tiller Model, $R^2 = 0.95$
 - Scheil Model, $R^2 = 0.92$
 - $\text{Gr} = 1.7 \times 10^4$

- 3.2 mm/hr, Lid Configuration
 - Tiller Model, $R^2 = 0.74$
 - Scheil Model, $R^2 = 0.84$
 - $\text{Gr} = 1.9 \times 10^4$

- 3.2 mm/hr, $\Delta T = 300°C$
 - Tiller Model, $R^2 = 0.66$
 - Scheil Model, $R^2 = 0.71$
 - $\text{Gr} = 2.1 \times 10^4$

- 3.2 mm/hr, 400 g
 - Tiller Model, $R^2 = 0.53$
 - Scheil Model, $R^2 = 0.95$
 - $\text{Gr} = 14.2 \times 10^4$
Hybrid Model

• Use a simple weighted average method between the two models to get:

\[
C_{Hybrid} = C_{Tiller}\left(1 - \frac{h}{h_0}\right) + C_{Scheil}\left(\frac{h}{h_0}\right)
\]

Eqn. 5

• \(k\) and \(k_{eff}\) are the same for parameters used in their respective equations.

• Simulates a system transitioning from a diffusion dominant to convection dominant regime.
Hybrid Model

Modeling Results

Hybrid Model

- Tiller Model
- Scheil Model

Mass Fraction CsCl, ω_{CsCl}

- 5.0 mm/hr, No-Lid Configuration
 - Tiller Model, $R^2 = 0.92$
 - Scheil Model, $R^2 = 0.93$
 - Hybrid Model, $R^2 = 0.96$

- 3.2 mm/hr, 400 g
 - Tiller Model, $R^2 = 0.53$
 - Scheil Model, $R^2 = 0.95$
 - Hybrid Model, $R^2 = 0.94$
Conclusions

• Optimal operating parameters are:
 - 400 g mixture,
 - 5.0 mm/hr,
 - $\Delta T = 200^\circ$C,
 - Lid Configuration.

• Multiple stages can be used to decrease waste volume.

• The Scheil model fits best the 400 g and $\Delta T = 300^\circ$C cases.

• The hybrid model fits best the 50 g, lid and no-lid configurations, but can be used for all cases.
This work was supported by the Laboratory Directed Research and Development (LDRD) Program of Idaho National Laboratory, administered by the Center for Advanced Energy Studies (CAES), under the Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517.

• Joanna Taylor and Michael Shaltry
• Robert Hoover, Josh Versey, Mike Pack, Elizabeth Sooby, and Ryan Bezzant.
Thank you for your attention!